Spelling suggestions: "subject:"progressive than slums"" "subject:"progressive than sluit""
1 |
Impacts of Retrogressive Thaw Slumps on the Geochemistry of Permafrost Catchments, Stony Creek Watershed, NWTMalone, Laura 08 May 2013 (has links)
Retrogressive thaw slumps are one of the most dramatic thermokarst landforms in periglacial regions. This thesis investigates the impacts of two of the largest hillslope thaw slumps on the geochemistry of periglacial streams on the Peel Plateau, Northwest Territories. It aims to describe the inorganic geochemistry of runoff across active mega-slumps, impacted and pristine tundra streams, as well as that of the ice-rich permafrost exposed in the slump headwalls. Slump runoff is characterized by elevated suspended sediments (911 g/L), high conductivity (2700 µS/cm), and high SO42- ( up to 2078 ppm). The runoff originates as a solute-rich meltwater near the slump headwall, and leaches and re-dissolves soluble salts (e.g., gypsum) as it flows along the mudflow. Conductivity increases until the runoff mixes with pristine tundra streams, diluting the slump runoff signal. SO42-/Cl- is used as a tracer to isolate the slump runoff signal in impacted waters, and suggests that the contribution of slump runoff to the Peel River has been increasing since the 1960s.
|
2 |
Impacts of Retrogressive Thaw Slumps on the Geochemistry of Permafrost Catchments, Stony Creek Watershed, NWTMalone, Laura January 2013 (has links)
Retrogressive thaw slumps are one of the most dramatic thermokarst landforms in periglacial regions. This thesis investigates the impacts of two of the largest hillslope thaw slumps on the geochemistry of periglacial streams on the Peel Plateau, Northwest Territories. It aims to describe the inorganic geochemistry of runoff across active mega-slumps, impacted and pristine tundra streams, as well as that of the ice-rich permafrost exposed in the slump headwalls. Slump runoff is characterized by elevated suspended sediments (911 g/L), high conductivity (2700 µS/cm), and high SO42- ( up to 2078 ppm). The runoff originates as a solute-rich meltwater near the slump headwall, and leaches and re-dissolves soluble salts (e.g., gypsum) as it flows along the mudflow. Conductivity increases until the runoff mixes with pristine tundra streams, diluting the slump runoff signal. SO42-/Cl- is used as a tracer to isolate the slump runoff signal in impacted waters, and suggests that the contribution of slump runoff to the Peel River has been increasing since the 1960s.
|
3 |
The Effects of Retrogressive Thaw Slump Development on Persistent Organic Pollutants in Lake Sediments of the Mackenzie River Delta Uplands, NT, CanadaEickmeyer, David 03 September 2013 (has links)
Using a comparative spatial and temporal analysis on sediment cores from 8 lakes in the Mackenzie River Delta uplands region, NT, Canada, this study assessed how persistent organic pollutant (POP) deposition to lake sediments was affected by: (1) the presence of retrogressive thaw slumps on lake shores; and (2) changes occurring with increased autochthonous primary productivity. POPs examined included polychlorinated biphenyls (PCBs), penta- and hexachlorobenzenes (CBzs), and dichlorodiphenyltrichloroethane and metabolites (DDTs). Surface sediments of slump-affected lakes contained higher total organic carbon (TOC)-normalized POP concentrations than nearby reference lakes unaffected by thaw slumps. Inorganic sedimentation rates were positively related to contaminant concentrations, suggesting that the influx of siliciclastic material reducing organic carbon in slump-affected lake water indirectly results in higher concentrations of POPs on sedimentary organic matter. This explanation was corroborated by an inverse relationship between sedimentary POP concentrations and TOC content of the lake water.
Deposition proxies of autochthonous carbon were not significantly correlated to POP fluxes of surface sediments, and historical profile fluctuations did not coincide with variation in POP deposition. Thus this study does not support the contention that algal-derived organic carbon increases the delivery of organic pollutants to sediments (the algal-scavenging hypothesis), as previously proposed for mercury. Higher POP concentrations observed in surface sediments of slump-affected lakes are best explained by simple solvent switching processes of hydrophobic contaminants onto a lower pool of available organic carbon when compared to neighbouring lakes unaffected by thaw slump development.
|
4 |
The Effects of Retrogressive Thaw Slump Development on Persistent Organic Pollutants in Lake Sediments of the Mackenzie River Delta Uplands, NT, CanadaEickmeyer, David January 2013 (has links)
Using a comparative spatial and temporal analysis on sediment cores from 8 lakes in the Mackenzie River Delta uplands region, NT, Canada, this study assessed how persistent organic pollutant (POP) deposition to lake sediments was affected by: (1) the presence of retrogressive thaw slumps on lake shores; and (2) changes occurring with increased autochthonous primary productivity. POPs examined included polychlorinated biphenyls (PCBs), penta- and hexachlorobenzenes (CBzs), and dichlorodiphenyltrichloroethane and metabolites (DDTs). Surface sediments of slump-affected lakes contained higher total organic carbon (TOC)-normalized POP concentrations than nearby reference lakes unaffected by thaw slumps. Inorganic sedimentation rates were positively related to contaminant concentrations, suggesting that the influx of siliciclastic material reducing organic carbon in slump-affected lake water indirectly results in higher concentrations of POPs on sedimentary organic matter. This explanation was corroborated by an inverse relationship between sedimentary POP concentrations and TOC content of the lake water.
Deposition proxies of autochthonous carbon were not significantly correlated to POP fluxes of surface sediments, and historical profile fluctuations did not coincide with variation in POP deposition. Thus this study does not support the contention that algal-derived organic carbon increases the delivery of organic pollutants to sediments (the algal-scavenging hypothesis), as previously proposed for mercury. Higher POP concentrations observed in surface sediments of slump-affected lakes are best explained by simple solvent switching processes of hydrophobic contaminants onto a lower pool of available organic carbon when compared to neighbouring lakes unaffected by thaw slump development.
|
Page generated in 0.1045 seconds