• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Predictive Place-Cell Sequences for Goal-Finding Emerge from Goal Memory and the Cognitive Map: A Computational Model

Gönner, Lorenz, Vitay, Julien, Hamker, Fred 23 November 2017 (has links) (PDF)
Hippocampal place-cell sequences observed during awake immobility often represent previous experience, suggesting a role in memory processes. However, recent reports of goals being overrepresented in sequential activity suggest a role in short-term planning, although a detailed understanding of the origins of hippocampal sequential activity and of its functional role is still lacking. In particular, it is unknown which mechanism could support efficient planning by generating place-cell sequences biased toward known goal locations, in an adaptive and constructive fashion. To address these questions, we propose a model of spatial learning and sequence generation as interdependent processes, integrating cortical contextual coding, synaptic plasticity and neuromodulatory mechanisms into a map-based approach. Following goal learning, sequential activity emerges from continuous attractor network dynamics biased by goal memory inputs. We apply Bayesian decoding on the resulting spike trains, allowing a direct comparison with experimental data. Simulations show that this model (1) explains the generation of never-experienced sequence trajectories in familiar environments, without requiring virtual self-motion signals, (2) accounts for the bias in place-cell sequences toward goal locations, (3) highlights their utility in flexible route planning, and (4) provides specific testable predictions.
12

The taxonomy of Crowdfunding - An actualized overview of the development of internet crowdfunding models

Tillberg, Fredrik January 2019 (has links)
Crowdfunding challenges century long boundaries between the public, the industry andinnovation. In that respect the phenomenon holds the potential to decentralize and democratizethe way ventures are financed and realized. Crowdfunding has seen a lot of exitingdevelopments during the last few years, partly because of new crowdfunding platformsemerging on the internet, and partly because of new ground-breaking technology being used forfunding purposes. Meanwhile research has not quite catched up with the recent developments ofdifferent models for crowdfunding. This study’s aim is therefor to give an comprehensiveoverview of the different models of crowdfunding that are being utilized by crowdfundingplatforms on the internet today. A deductive content analysis has been made of 67 currentcrowdfunding platforms. The platforms have been analysed in order to determine what model ofcrowdfunding they utilize. The result has, apart from partly confirming prior studies, alsoproduced new exiting findings on what mechanisms constitute some of the crowdfundingmodels we see today. A new taxonomy of crowdfunding models is discussed and proposed. Theconclusion is that the need for a updated taxonomy, like the one this study provides, was wellneeded in order to understand the field. One important finding is that blockchain technology hasproduced a new form of crowdfunding through cryptocurrency: Initial coin offering. Thatparticular area will likely develop and continue to decentralize and democratise the economicalhuman interaction when it comes to financing.
13

Predictive Place-Cell Sequences for Goal-Finding Emerge from Goal Memory and the Cognitive Map: A Computational Model

Gönner, Lorenz, Vitay, Julien, Hamker, Fred January 2017 (has links)
Hippocampal place-cell sequences observed during awake immobility often represent previous experience, suggesting a role in memory processes. However, recent reports of goals being overrepresented in sequential activity suggest a role in short-term planning, although a detailed understanding of the origins of hippocampal sequential activity and of its functional role is still lacking. In particular, it is unknown which mechanism could support efficient planning by generating place-cell sequences biased toward known goal locations, in an adaptive and constructive fashion. To address these questions, we propose a model of spatial learning and sequence generation as interdependent processes, integrating cortical contextual coding, synaptic plasticity and neuromodulatory mechanisms into a map-based approach. Following goal learning, sequential activity emerges from continuous attractor network dynamics biased by goal memory inputs. We apply Bayesian decoding on the resulting spike trains, allowing a direct comparison with experimental data. Simulations show that this model (1) explains the generation of never-experienced sequence trajectories in familiar environments, without requiring virtual self-motion signals, (2) accounts for the bias in place-cell sequences toward goal locations, (3) highlights their utility in flexible route planning, and (4) provides specific testable predictions.

Page generated in 0.0251 seconds