• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 29
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 90
  • 54
  • 51
  • 43
  • 19
  • 16
  • 15
  • 13
  • 12
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Efeitos e formas de aplicação de Bacillus subtilis no controle de nematoides em cana-de-açúcar / Effects and application forms of Bacillus subtilis to control nematodes in sugarcane

Mazzuchelli, Rita de Cássia Lima 29 August 2013 (has links)
Made available in DSpace on 2016-07-18T17:51:12Z (GMT). No. of bitstreams: 1 Rita de Cassia Lima Mazzuchelli.pdf: 264845 bytes, checksum: d6d57b7dd9a9f9a69fc6599de070e810 (MD5) Previous issue date: 2013-08-29 / The aim of this study was to evaluate two methods of application of Bacillus subtilis in biological control of nematodes in two varieties of sugarcane by comparing with the conventional chemical control. The experiment was conducted in the municipality of Caiabu in an area with nematode infestation. Two genotypes of sugarcane which the action of nematodes were used in the experiment SP81-3250 and RB867515. The employee was a randomized complete block design with five replications. Treatments were two genotypes of sugarcane combined with four ways to control nematodes (carbofuran, B. subtilis applied at planting, B. subtilis applied in post -emergence control and without the application of chemical or biological nematicide) total of 40 plots. During the conduct of the culture three assessments for quantification of nematodes on the roots was carried out. Was also carried out an assessment of chlorophyll content, tillering and biomass energy potential by the calorimeter method at 180 days after planting. At harvest yield was determined and made technological analysis of sugarcane. Chemical and biological control with carbofuran with Bacillus subtilis were effective for controlling nematodes reviews. There were no differences in the efficiency of the control in the evaluation of two forms of application of bacteria in soil. There increments Brix and Pol in variety SP81-3250 when we applied the treatment with B. subtlis. / O objetivo do presente trabalho foi o de avaliar duas formas de aplicação de Bacillus subtilis no controle biológico de nematoides em duas variedades de cana-de-açúcar comparando-se com o controle químico convencional. O experimento foi desenvolvido no município de Caiabu, em uma área com histórico de infestação de nematoides. Foram utilizados no experimento dois genótipos de cana-de-açúcar susceptíveis a ação de nematoides, SP81-3250 e RB867515. O delineamento empregado foi de blocos casualizados, com cinco repetições. Os tratamentos foram dois genótipos de cana-de-açúcar combinados com quatro formas de controle de nematoides (carbofurano, B. subtilis aplicado no sulco de plantio, B. subtilis aplicado em pós-emergência e controle sem aplicação de nematicida químico ou biológico), totalizando 40 parcelas. Durante a condução da cultura foram realizadas três avaliações para quantificação de nematoides nas raízes. Foi também realizado uma avaliação de teor de clorofila, perfilhamento e potencial energético da biomassa pelo método do calorímetro aos 180 dias após o plantio. No momento da colheita foi determinada a produtividade e realizadas análises tecnológicas da cana-de-açúcar. O controle químico com carbofurano e biológico com Bacillus subtilis foram eficientes para controlar os nematoides avaliados. Não houve diferenças quanto à eficiência de controle na avaliação das duas formas de aplicação da bactéria no solo. Ocorreram incrementos do Brix e do Pol na variedade SP81-3250 quando aplicou-se o tratamento com B. subtlis.
52

Molecular Characterization of the Plant Growth Promoting Bacterium Enterobacter sp. SA187 upon Contact with Arabidopsis thaliana

Alsharif, Wiam 05 1900 (has links)
Salt stress is a severe environmental challenge in agriculture, limiting the quality and productivity of the crops around the globe. Plant growth promoting rhizobacteria (PGPR) is proposed as a friendly solution to overcome those challenges. The desert plant endophytic bacterium, Enterobacter sp. SA187 has shown plant growth promotion and salt stress tolerance beneficial effect on the model plant Arabidopsis thaliana in vitro as well as under the field conditions on different crops. SA187 has a distinguished morphology of yellow colonies (SA187Y) that could be due to carotenoid biosynthesis. However, the bacteria tend to lose the yellow color upon incubation with the plants and the colonies turn to white (SA187W). In comparison to SA187Y, SA187W shows 50% reduction on the beneficial impact on A. thaliana fresh and dry weight of root and shoot system. By counting the CFU/plant, we showed that SA187Y and SA187W both have similar colonization rate in both shoots and roots. Under non-salt conditions, optimal bacterial colonization was observed on day 8 after inocubation, however, under the salt stress condition, the optimal colonization was observed at day 4. Moreover, during the time period of the incubation of the SA187Y with the plants, there was a consistent noticeable loss of the yellow color of the colonies. This change in color is only observed eight days after transfer and the number of white colonies increases with the increase of the incubation time. In addition, SA187W was GFP-tagged by Tn7 transposon system and visualized by confocal laser scanning microscopy. The SA187W-GFP colonies have shown a similar colonization pattern as SA187Y-GFP, bacteria were colonizing the differentiation zone and cell elongation zone in the roots. Finally, the gene expression of the carotenoid biosynthesis pathways genes in SA187Y showed an overall higher gene expression compared to SA187W. In conclusion, the color loss seems to affect the beneficial impact of the bacteria on plants. However, the reduced beneficial impact is not due to the colonization efficiency of bacteria on the plant roots but could be due to a regulation of gene expression of carotenoid biosynthesis.
53

Induced disease resistance elicited by acibenzolar-S-methyl and plant growth-promoting rhizobacteria in tobacco (Nicotiana tabacum L.)

Parkunan, Venkatesan 28 October 2008 (has links)
Active disease resistance in plants is induced during the pathogen infection process that triggers multiple defense-related genes to establish broad-spectrum resistance. Several biotic and abiotic agents can mimic natural induced resistance (IR), categorized as systemic acquired (SAR) or induced systemic resistance (ISR). IR, triggered by acibenzolar-S-methyl (ASM) or plant growth-promoting rhizobacteria (PGPR), was evaluated on two-to-three types of tobacco in greenhouse and field studies. Tobacco mosaic virus (TMV) local lesion assays monitored induction and maintenance of ASM-induced SAR over a 21 day period via proportional reduction in the number of TMV local lesions between an untreated control and ASM-treated plants. Intraspecific variation in SAR was found among tobacco types; burley and flue-cured tobaccos responded by day 3, while oriental tobacco responded between day 3 and 6. The SAR signal was greatest between 6 and 15 days following ASM application, but IR was slightly evident even at 21 days after ASM application in all three tobacco types. Bottom and middle leaves responded similarly on all sample dates, but top leaves showed the weakest SAR response. Tobacco cyst nematode (TCN; Globodera tabacum solanacearum) is one of the most destructive pathogens of tobacco in Virginia. Among four PGPR combinations tested, a mixture of Bacillus amyloliquefaciens IN937a (GB99) and B. subtilis A13 (GB122) most consistently suppressed TCN reproduction in flue-cured and oriental tobacco. Application of ASM similarly reduced final numbers of TCN cysts, but also resulted in chlorosis, stunting, and lower plant fresh weight. GB99+GB122 also suppressed TCN development and reproduction in susceptible and resistant flue-cured cultivars, but reductions by ASM were less consistent. In a split-root trial, soil amendment with GB99+GB122 in one half of an oriental tobacco root system lowered final numbers of TCN more than did ASM. ASM exhibited undesirable effects in phytotoxicity trials in flue-cured and oriental tobacco, but GB99+GB122 was not phytotoxic. When oriental tobacco seedlings were grown in a GB99+GB122-treated soil-less media, a single application of 200 mg ASM/L one week after transplanting significantly suppressed TCN reproduction in the field without phytotoxicity. Further field research is needed to confirm this effect in flue-cured tobacco. / Ph. D.
54

Microbial Biostimulants in Organic Farming Systems: Patterns of Current Use and an Investigation of Their Efficacy in Different Soil Environments

Laudick, Julia Ann 08 August 2017 (has links)
No description available.
55

Gènes et métabolites végétaux marqueurs de l'association riz-bactérie phytobénéfique / Root genes and metabolites as markers of rice-phytobeneficial bacteria association

Valette, Marine 24 May 2019 (has links)
Ce projet explore l’hypothèse selon laquelle les gènes et les métabolites végétaux communément régulés joueraient un rôle majeur dans l’interaction riz-PGPR et constituerait une signature moléculaire de la perception des PGPR par le riz. Dans cet objectif, une analyse intégrant le suivi de l’expression d’une sélection de gènes ainsi que le profilage des métabolites secondaires a été conduite sur les racines d’un unique cultivar de riz (Nipponbare) en réponse à l’inoculation de dix souches de PGPR appartenant à divers genres bactériens (Azospirillum, Herbaspirillum, Paraburkholderia). Nos résultats ont permis l’identification de quatre gènes de riz pouvant être considérés comme marqueurs de l’association riz-PGPR, avec notamment deux gènes impliqués dans la biosynthèse de phytoalexines et un gène codant pour une protéine PR (pathogenesis-related). De plus, une signature métabolique commune, constituée de neuf composés, a été mise en évidence, dont la réduction de l’accumulation de trois alkylrésorcinols et l’augmentation de l’accumulation de deux amides d’acides hydroxycinnamiques (HCAA) : la N-p-coumaroylputrescine et la N-féruloylputrescine. Cette signature métabolique a été corrélée avec l’augmentation de l’expression de deux gènes impliqués dans la biosynthèse de la N-féruloylputrescine. Il est intéressant d’observer que la confrontation du riz à un pathogène bactérien entraine une réduction de l’accumulation de ces HCAA dans les racines. Cette accumulation d’HCAA, qui sont des composés antimicrobiens potentiels, pourrait être considérée comme une réaction primaire de la perception de bactéries par le riz / Besides, a common metabolomic signature of nine compounds was highlighted, with the reduced accumulation of three alkylresorcinols and increased accumulation of two hydroxycinnamic acid amides (HCAA), identified as N-p-coumaroylputrescine and N-feruloylputrescine. This coincided with the increased transcription of two genes involved in the N-feruloylputrescine biosynthetic pathway. Interestingly, exposure to a rice bacterial pathogen triggered a reduced accumulation of these HCAA in roots. Accumulation of HCAA, that are potential antimicrobial compounds, might be considered as a primary reaction of rice to bacterial perception
56

Le pathosystème Lin (Linum usitatissimum) - Fusarium oxysporum : Impact du champignon et d'un agent de biocontrôle sur des réponses moléculaires de la plante et le développement de la fusariose / Flax (Linum usatissimum) - Fusarium oxysporum pathosystem : Impact of the pathogen and a biocontrol agent on plant molecular responses and Fusarium wilt development

Planchon, Aline 18 December 2018 (has links)
Le lin, principale plante à fibres cultivée en France possède un intérêt industriel pour la qualité de ses fibres. Les cultures de lin sont régulièrement attaquées par un champignon tellurique, Fusarium oxysporum f. sp. lini (Fol), responsable des plus grandes pertes dans les cultures de lin. Les PGPR (Plant Growth Promoting Rhizobacteria) sont des bactéries réputées pour leurs capacités à améliorer la croissance et le développement des plantes, mais également pour leur pouvoir compétiteur au sein de la rhizosphère et leur aptitude à induire une réponse immunitaire chez les plantes. Parallèlement, l’utilisation de SDP (Stimulateur des Défenses des Plantes), molécules capables d’éliciter les mécanismes de défenses des plantes est une autre alternative pour limiter l’utilisation des pesticides. Dans le cadre de ce projet mené sur deux variétés de lin, Aramis et Mélina, il a pu être montré que Fol induisait un remodelage de la paroi au niveau des racines et des tiges, impliquant les hémicelluloses et les pectines, seulement deux jours après inoculation avec le champignon. L’utilisation de la souche ATCC 6633 de Bacillus subtilis comme agent de biocontrôle a permis de réduire de façon significative l’apparition des symptômes de la fusariose. Il a également été montré qu’en plus d’avoir un effet fongicide sur Fol, cette bactérie est capable d’induire l’expression de deux gènes de défense (Pathogenesis-Related) codant pour une β-(1,3)-glucanase (PR-2) et codant pour une chitinase-like (CTL-10), de gènes impliqués dans la voie des phénylpropanoïdes (PHENYLALANINE AMONIA LYASES, PAL-3 et PAL-4) et dans le remodelage pariétal (PECTIN METHYLESTERASE-3, PME-3) au niveau racinaire. Des analyses biochimiques ont également permis de montrer que B. subtilis provoque des modifications se traduisant par un renforcement pariétal au niveau des tiges chez les deux variétés. Enfin, l’association de la PGPR avec une molécule élicitrice (pregnénolone sulfate) a eu un effet synergique sur l’expression de gènes de défense. / In France, flax (Linum usitatissumum) is a principal fibers crop. Fusarium oxysporum f sp lini (Fol), a soil-borne fungus, is responsible for the major losses in crop yield. PGPR (Plant Growth Promoting Rhizobacteria) are known for their abilities to promote plant growth and health. These bacteria are also good competitors in the rhizosphere and can induce a plant defense response. The use of compounds able to elicit plant defense mechanisms is also an alternative to limit the use of pesticides. In this project, it has been shown that F. oxysporum f. sp. lini induces only two days after inoculation cell wall remodeling in the root and the stem involving hemicelluloses and pectins on two flax varieties, Aramis and Mélina, . The use of the Bacillus subtilis strain ATCC 6633 as biocontrol agent significantly reduced fusarium wilt appearance. In addition to its antifungal effect against Fol, this bacteria is able to induce the expression of two Pathogenesis-Related genes coding for a β-(1,3)-glucanase (PR-2) and a chitinase-like (CTL-10), genes involved in the phenylpropanoid pathway (PHENYLALANINE AMONIA LYASES, PAL-3 and PAL-4) and also in cell wall remodeling (PECTIN METHYLESTERASE-3, PME-3) in the root. Biochemical analyses show that B. subtilis causes modifications resulting in cell wall reinforcement in the stem in both varieties. Finally, the association of B. subtilis with an elicitor (pregnenolone sulfate) had a synergistic effect on the expression of defense-related genes.
57

Rizobactérias nativas da Caatinga com potencial para redução dos efeitos da seca em soja (Glycine max L.) / Native of Caatinga rhizobacteria with potential for reducing the adverse effects of drought in soybean (Glycine max L.)

Braga, Ana Paula Andrade 03 March 2016 (has links)
No semiárido brasileiro, a vegetação predominante é a Caatinga, bioma ainda pouco explorado, que apresenta plantas e micro-organismos com alta resistência aos períodos de seca imposto pelo clima. Os micro-organismos associados às plantas deste bioma, são capazes de desenvolver mecanismos de proteção celular contra o estresse hídrico, assim como proteção vegetal contra a dessecação. O presente estudo buscou compreender as rizobactérias associadas a Mimosa artemisiana a fim de selecionar bactérias tolerantes à seca com características de promover o crescimento de plantas sob condições de estresse hídrico, diminuindo assim, os efeitos adversos impostos pela seca. As amostras de solo rizosférico foram coletadas ao longo da Caatinga, englobando os estados da BA e PE, totalizando quatro pontos de coleta. Com o uso de metodologias dependentes de cultivo, foi isolado bactérias com algumas características de promoção de crescimento de plantas diretos e/ou indiretos, como produção de AIA e fixação de nitrogênio. Além disso, linhagens capazes de crescer em meio com reduzida atividade de água e com mecanismos de proteção contra a dessecação, como, produção de EPS, biofilme, produção da ACC deaminase e indução de resistência sistêmica através das enzimas peroxidase e polifenoloxidase. Uma linhagem de Paenibacillus sp. e outra de Bacillus sp. foram capazes de promover o crescimento de soja sob condições de estresse hídrico, aumentando alguns parâmetros vegetais como, parte aérea e sistema radicular analisados. / In the Brazilian semi-arid region, the predominat vegetation is the Caatinga biome, still little explored, which features plants and micro-organisms with high resistance to drought periods imposed by the climate. Microorganisms associated with plants in this biome are able to develop mechanisms of cellular protection agains water stress, as well as vegetable protection agains desiccation. The presente study souught tounderstand the rhizobacteria associated with Mimosa artemisiana in order to select drought-tolerant bactéria with characteristics to promote the growth of plants under water stress conditions, thus reducing adverse effects imposed by drought. Rhizospheric soil samples were collectes along the Caatinga, encompassing the States of Bahia and Pernambuco, totaling four collection points. With the use of farming-dependet methodologies, was isolated bactéria with some features of promotion of growth of direct and/or indirect plants such as AIA production and nitrogen fixation. In addition, able to grow amid strains with reduced water activity and mechanisms of protection against desiccation, such as production of EPS, biofilm, production of ACC deaminase and induction of systemic resistance through peroxidase enzymes and polifenoloxidase. A strain of Paenibacillus sp. and Bacillus sp. were able to promote soybean gowth under water stress conditions, increasing some parameters like vegetables, shoot and root system.
58

Induced systemic resistance against Pythium aphanidermatum by plant growth-promoting rhizobacteria on cucumber (Cucumis sativus L.)

Chen, Chunquan, 1958- January 1998 (has links)
Cucumber root rot caused by Pythium aphanidermatum can be suppressed by introduced plant growth-promoting rhizobacteria (PGPR). Preliminary experiments clarified that this root disease could be suppressed by strains of Pseudomonas aureofaciens, P. corrugata, and P. fluorescens. To determine whether the mechanism was a systemic resistance induced by PGPR, a split root technique was employed on greenhouse cucumbers grown in soilless substrates. On the split roots, bacteria which were introduced into one side of the root were completely separated from pathogen challenged-inoculated roots-on the other side of the roots. Results from the series of experiments conducted with this design demonstrated that (i) the resistance against root rot induced by PGPR was systemic, (ii) germination of P. aphanidermatum zoospores was reduced in extracts from bacterized roots compared to non-treated control, and (iii) spread of Pythium mycelia was delayed and zoospore germination was inhibited on the distant induced root, compared to the non-bacterized control. Furthermore, enzyme analysis indicated that phenylalanine ammonia lyase, peroxidase and polyphenoloxidase increased on cucumber roots two days after they were bacterized with Pseudomonas strains 13 or 63--28. When the bacterized roots were challenged with P. aphanidermatum, these plant defense enzymes increased as the symptoms appeared, but this accumulation of enzymes was not any higher on roots induced with each of the Pseudomonas strains compared to the Pythium inoculated control. This enzyme stimulation was also systemically induced by PGPR or P. aphanidermatum on cucumber roots. The patterns of iso-peroxidase induced with the PGPR and P. aphanidermatum treatments were different. High levels of salicylic acid (SA) accumulated in bacteria-induced roots, as well as in pathogen-infected roots, which suggests that SA may be associated with cucumber resistance response. But exogenous application of SA did not induce any systemi
59

Biological control and plant growth promotion by selected trichoderma and Bacillus species.

Yobo, Kwasi Sackey. January 2005 (has links)
Various Trichoderma and Bacillus spp. have been documented as being antagonistic to a wide range of soilborne plant pathogens, as well as being plant growth stimulants. Successes in biological control and plant growth promotion research has led to the development of various Trichoderma and Bacillus products, which are available commercially. This study was conducted to evaluate the effect of six Trichoderma spp. and three Bacillus spp. and their respective combinations, for the biological control of Rhizoctonia solani damping-off of cucumber and plant growth promotion of dry bean (Phaseolus vulgaris L.). In vivo biological control and growth promotion studies were carried out under greenhouse and shadehouse conditions with the use of seed treatment as the method of application. In vitro and in vivo screening was undertaken to select the best Trichoderma isolates from 20 Trichoderma isolated from composted soil. For in vitro screening, dual culture bioassays were undertaken and assessed for antagonisms/antibiosis using the Bell test ratings and a proposed Invasive Ability rating based on a scale of 1-4 for possible mycoparasitic/hyperparasitic activity. The isolates were further screened in vivo under greenhouse conditions for antagonistic activity against R. solani damping-off of cucumber (Cucumis sativus L.) cv. Ashley seedlings. The data generated from the in vivo greenhouse screening with cucumber plants were analysed and grouped according to performance of isolates using Ward‟s Cluster Analysis based on a four cluster solution to select the best isolates in vivo. Isolates exhibiting marked mycoparasitism of R. solani (during ultrastructural studies) viz, T. atroviride SY3A and T. harzianum SYN, were found to be the best biological control agents in vivo with 62.50 and 60.06% control of R. solani damping-off of cucumber respectively. The in vitro mode of action of the commercial Trichoderma product, Eco-T®, and Bacillus B69 and B81 suggested the production of antimicrobial substances active against R. solani. In vitro interaction studies on V8 tomato juice medium showed that the Trichoderma and Bacillus isolates did not antagonise each other, indicating the possibility of using the two organisms together for biological control and plant growth promotion studies. Greenhouse studies indicated that combined inoculation of T. atroviride SYN6 and Bacillus B69 gave the greatest plant growth promotion (43.0% over the uninoculated control) of bean seedlings in terms of seedling dry biomass. This was confirmed during in vivo rhizotron studies. However, results obtained from two successive bean yield trials in the greenhouse did not correlate with the seedling trials. Moreover, no increase in protein or fat content of bean seed for selected treatments was observed. In the biological control trials with cucumber seedlings, none of the Trichoderma and Bacillus combinations was better than single inoculations of Eco-T®, T. atroviride SY3A and T. harzianum SYN. Under nutrient limiting conditions, dry bean plants treated with single and dual inoculations of Trichoderma and Bacillus isolates exhibited a greater photosynthetic efficiency that the unfertilized control plants. Bacillus B77, under nutrient limiting conditions, caused 126.0% increase in dry biomass of bean seedlings after a 35-day period. Nitrogen concentrations significantly increased in leaves of plants treated with Trichoderma-Bacillus isolates. However, no significant differences in potassium and calcium concentrations were found. Integrated control (i.e. combining chemical and biological treatments) of R. solani damping-off of cucumber seedlings proved successful. In vitro bioassays with three Rizolex® concentrations, viz., 0.01g.l-1, 0.1g.l-1 and 0.25g.l-1 indicated that the selected Trichoderma isolates were partly sensitive to these concentrations whereas the Bacillus isolates were not at all affected. In a greenhouse trial, up to 86% control was achieved by integrating 0.1g.l-1 Rizolex® with T. harzianum SYN, which was comparable to the full strength Rizolex® (1g.l-1) application. Irrespective of either a single or dual inoculations of Trichoderma and/or Bacillus isolates used, improved percentage seedling survival as achieved with the integrated system, indicating a synergistic effect. The results presented in this thesis further reinforce the concept of biological control by Trichoderma and Bacillus spp. as an alternative disease control strategy. Furthermore, this thesis forms a basis for Trichoderma-Bacillus interaction studies and proposes that the two organisms could be used together to enhance biological control and plant growth promotion. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.
60

Seed bacterization with Pseudomonas fluorescens and interactions with Pythium ultimum on tomato in soilless systems /

Hultberg, Malin, January 1900 (has links) (PDF)
Diss. (sammanfattning) Alnarp : Sveriges lantbruksuniv. / Härtill 5 uppsatser.

Page generated in 0.0515 seconds