• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 23
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 94
  • 26
  • 14
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Fasting Hour Excretion Test for Riboflavin Using College Women as Subjects

Beard, Gertrude Ophelia January 1945 (has links)
The purpose of this study was to determine reserves of riboflavin in urine of college women.
12

Mechanism of flavin cofactor binding to flavodoxins: the role of aromatic residues and the aromatic gate

Murray, Tracey Arnold January 2003 (has links)
No description available.
13

Riboflavin photosensitized inactivation of lambda phage in PBS: an action spectrum and mechanistic investigation

Martin, Christopher B. 29 September 2004 (has links)
No description available.
14

Kinetics and effects of riboflavin photosensitized degradation on soymilk flavor stability

Huang, Rongmin 22 February 2006 (has links)
No description available.
15

Identification and Characterization of the Enzymes Involved in Biosynthesis of FAD and Tetrahydromethanopterin in Methanocaldococcus jannaschii

Mashhadi, Zahra 09 September 2010 (has links)
Methanogens belong to the archaeal domain, are anaerobes and produce methane from CO2 or other simple carbon compounds. Methanogenesis is a key process of the global carbon cycle and methanogens produce about 75-85% of all methane emissions. Besides the universally occurring coenzymes that are needed in normal metabolic pathways, such as biotin, coenzyme A, thiamine, FAD, PLP, etc.; methanogens need six additional coenzymes that are involved in the methane production pathway: methanofuran, tetrahydromethanopterin, coenzyme F₄₂₀, coenzyme M, coenzyme B, and coenzyme F₄₃₀. Although now it is known that some non-methanogenic archaea and bacteria have several of these coenzymes, they are named methanogenic coenzymes since these six coenzymes were first isolated and identified from methanogens. We are using Methanocaldococcus jannaschii as a model organism of methanogens to understand and investigate pathways of coenzymes biosynthesis. Our laboratory is involved in establishing the chemical functions of hypothetical proteins that function in targeted biochemical pathways leading to coenzyme production within the euryarchaeon M. jannaschii and identifying their corresponding genes. While there are many coenzymes present in this organism, my focus is on the biosynthetic pathways of tetrahydromethanopterin and FAD. 7,8-Dihydro-D-neopterin 2',3'-cyclic phosphate (H₂N-cP) is the first intermediate in the biosynthesis of the pterin portion of tetrahydromethanopterin (H₄MPT), a C₁ carrier coenzyme. This intermediate is produced from GTP by MptA (MJ0775 gene product), a new class of GTP cyclohydrolase I. An Fe(II)-dependent cyclic phosphodiesterase (MptB, MJ0837 gene product) hydrolyzes the cyclic phosphate of H₂N-cP to a mixture of 7,8-dihydro-D-neopterin 2'-monophosphate and 7,8-dihydro-D-neopterin 3'-monophosphate. MptB requires Fe²⁺ for activity, the same as observed for MptA. Thus the first two enzymes involved in H4MPT biosynthesis in the Archaea are Fe²⁺ dependent. In the FAD biosynthetic pathway, the conversion of riboflavin first into FMN and then to FAD is catalyzed by a bifunctional enzyme (RibF) that first acts as a kinase converting riboflavin to FMN in the presence of ATP and then acts as a nucleotidyl transferase using a second ATP to convert the FMN to FAD. Identification of the archaeal CTP-dependent riboflavin kinase, RibK (MJ0056 gene product) led us to identify a archaeal monofunctional FAD synthetase, RibL (MJ1179 gene product). RibL is the only air-sensitive FAD synthetase identified. / Ph. D.
16

Changes in Aromatic Chemistry and Sensory Quality of Milk Due to Light Wavelength

Webster, Janet B. 08 December 2006 (has links)
Gas chromatography (GC) and gas chromatography olfactometry (GCO) was used to determine the effect of specific light wavelengths on light oxidation in milk. The most damaging wavelengths to milk quality appear to be the UV (200-400 and 395 nm) and short visible (463 nm) wavelengths. However, exposure to 610 nm also appears to be damaging. GC and GCO were also used to look at the efficacy of film over-wraps made from iridescent films. Single-layer over-wraps were not as effective in reducing light oxidation as multi-layer film over-wraps. Single-layer over-wrap treatments had higher numbers of odor-active compounds than multi-layer over-wrap treatments with a number of odor-active compounds detected consistently in single-layer over-wrap treatments but not in the multi-layer over-wrap treatments. Concentrations of volatile compounds were slightly lower in the multilayer treatments. Multi-layer film over-wrap treatments were tested for light oxidation flavor intensity with a balanced incomplete block multi-sample difference test using a ranking system and a trained panel. Packaging over-wraps limited the production of light oxidation flavor in milk over time but not to the same degree as the complete light block. Blocking all visible riboflavin excitation wavelengths was better at reducing light oxidation flavor than blocking only a single visible excitation wavelength. A method to determine light oxidation in oil using Fourier Transform Infrared (FTIR) spectroscopy was established and preliminary data is presented. / Ph. D.
17

Protective effects of titanium dioxide packaging modification on sensory and oxidative changes in milk over 35 day shelf-life

Johnson, Daryan Stefon 07 February 2013 (has links)
Milk is often packaged in translucent containers providing little protection against flavor degradation from light. The effectiveness of TiO2 modifications of high density polyethylene (HDPE) packaging in affecting light-induced oxidation of extended shelf-life milk (2% total fat) and omega-3 fatty acid enriched milk (2% total fat) was studied. Packaging effectiveness was determined by assessing product quality, including changes in flavor, measuring changes in volatile compounds, thiobarbituric reactive substances and riboflavin concentrations.  Products were evaluated over a 35-day shelf-life when stored under fluorescent light (2200 lux) at 4"C. HDPE packaging included clear (no TiO2) serving as control (light exposed: no light barrier, light protected (foil overwrap) and three different TiO2 levels (low, medium, high) for the experimental treatments (total of five packaging treatments). TBARS was a good predictor of the perception of changes in sensory characteristics in 2% milk.. Under the experimental conditions used, a TBARS value of 1.3 mg/L could be considered the limiting sensory threshold for oxidized milk. Riboflavin concentration decreased by 10.5% in the light-protected control over 36 days and 28.5% in the high TiO2 packaged 2% milk, but losses were greater than 40% for all other packages. In omega-3 enriched milk, the high TiO2-HDPE package provided greater protection of sensory quality and riboflavin than clear, low and medium TiO2 packaging. However riboflavin decreased by 28% even in the light protected control which is a higher loss than observed in 2% fluid milk without omega-3 lipids. TBARS was greater than 4 mg/L in all products, including the light-protected control within three days, suggesting that oxidative stability was low. Omega-3 milk packaged in clear HDPE package exceeded MDA of 3 mg/L by day 7, suggesting the milk would have changes in sensory quality related to oxidation. The high TiO2 package protected riboflavin concentration from degradation and controlled MDA concentration the best of the TiO2 treatments through the test period in both fish oil enriched and non-enriched products. / Master of Science in Life Sciences
18

Ein neuer therapeutischer Ansatz zur vorbeugenden Behandlung der pathologischen Myopie - Einfluss des skleralen Riboflavin/Blaulicht Cross-Linkings auf das Augenwachstum junger Kaninchen

Körber, Nicole 10 March 2017 (has links) (PDF)
Die Arbeit umreißt das Krankheitsbild der Myopie (Kurzsichtigkeit) und deren unterschiedliche Ausprägungen, im Speziellen der progressiven und pathologischen Myopie. Hierbei wird ein Einblick in die Symptomatik, die anatomischen Ursachen und die heutigen medizinischen Interventionen gegeben. Hierdurch wird die Problematik einer zu „weichen“ Sklera (Lederhaut des Auges) und des damit einhergehenden fortschreitenden Augenwachstums deutlich. Im Zentrum der Arbeit steht ein neuer therapeutischer Ansatz zur vorbeugenden Behandlung der pathologischen Myopie; das Riboflavin/Blaulicht Cross-Linking der Sklera des Kaninchenauges. Dessen Wirkungsweise ermöglicht die biomechanische Versteifung von kollagenem Gewebe. Aus diesem Sachverhalt ergibt sich die Fragestellung der Arbeit: Ist das sklerale Riboflavin/Blaulicht Cross Linking geeignet das Augenwachstum im Tiermodell (junge Kaninchen) verträglich zu hemmen? Operationsbeeinflussende Parameter wie die Riboflavin-Durchdringungsdauer der Sklera und die sklerale Lichtdurchlässigkeit werden untersucht und für die Optimierung der Operationsmethode herangezogen und diskutiert. Zur Einschätzung des Versuchsansatzes werden die im Methodikteil dargelegten Anwendungen an adulten und jungen Kaninchen/Kaninchenaugen durchgeführt. In Tierversuchen wird die Schadensschwelle in Abhängigkeit der Blaulichtintensität, des Alters und der Pigmentierung untersucht, wobei histologische, immunhistochemische und elektronenmikroskopische Verfahren angewendet werden. Der inhibitorische Einfluss des Riboflavin/Blaulicht Cross-Linkings auf das Augenwachstum kann im Jungtiermodell durch verschiedene metrische Verfahren und MRT-Untersuchungen belegt werden.
19

Role Of Estrogen Response Element Half Sites In Estrogen Mediated Gene Regulation : Insights From Chicken Riboflavin Carrier Protein Promoter Characterization

Bahadur, Urvashi 03 1900 (has links) (PDF)
No description available.
20

Aspectos do mecanismo de formação 3-metil-2-buteno-1-tiol em cerveja e a reatividade dos iso-α-ácidos / Mechanistic aspect of 3-methyl-2-butene-1-thiol formation in beer and reactivity of iso-α-acids

Gustavo Tokoro Riether 25 June 2010 (has links)
A cerveja é uma bebida alcoólica fermentada derivada do amido e aromatizada com lúpulo (Humulus lupulus L.). Os α-ácidos são extraídos do cone do lúpulo e durante o processo de cozimento do mosto são isomerizados em iso-α-ácidos (IAAs), na configuração cis- e trans-, conferindo qualidade de espuma e sabor amargo característico da cerveja. Neste trabalho, é reportado que IAAs sofrem degradação fotossensibilizada por flavinas (Φ = 4,8x10-3 mol einstein-1), mesmo na presença de compostos fenólicos (ácido ferúlico, Φ = 2,0x10-3 mol einstein-1) em excesso molar de 10 vezes, sugerindo que radicais formados pela desativação do estado tripleto excitado da riboflavina por compostos fenólicos possam também estar envolvidos na degradação dos IAAs. Foram identificados dímeros e trímeros derivados do ácido ferúlico e p-coumárico através de LC-ESI-IT-MS como principais fotoprodutos de degradação dos compostos fenólicos. Reportamos a reatividade dos diferentes diastereoisômeros de iso-α-ácidos frente ao radical 2,2-difenil-1-picrilhidrazila (DPPH•), como modelo de radical peroxila, k2 = 0,41 e 1,3 L mol-1 s-1 para a reação com cis-IAA e trans-IAA em meio de etanol acidificado com 1 % ácido fórmico a temperatura de 25 °C, respectivamente. Estas constantes de velocidade específica sugerem que a degradação dos ácidos amargos via reação térmica em processo radicalar é importante no armazenamento do produto já que as constantes de velocidade de reação dos IAAs com o radical DPPH• são competitivas com as observadas para as reações de antioxidantes naturalmente presentes na cerveja com o radical DPPH• ([ácido ferúlico] = 0,2mg/Lcerveja; k2 = 1,18.102 M-1s-1). A análise dos dados termodinâmicos (Mistura de IAAs, ΔH‡ = 25 kJ mol-1 e ΔS‡ = -155 J mol-1 K-1) sugere um mecanismo de oxidação dos IAAs pelo radical DPPH• via HAT/PCET. A diferença de reatividade observada para os diastereoisômeros (cis/trans) está aparentemente relacionada ao arranjo estereoquímico dos grupos laterais isohexonoil e prenil conectados aos carbonos C(4) e C(5), respectivamente. Desta forma, sugere-se que a proximidade espacial dos sítios de insaturação na espécie trans- ocasiona um aumento na densidade eletrônica ou um fator apenas estatístico já que os H-alílicos estão próximos espacialmente, favorecendo desta forma a oxidação via radicalóide. / Beer is a fermented alcoholic beverage based on starch and flavored by hops (Humulus lupulus L.). The α-acids are extracted from hop cones and isomerize into iso-α-acids (IAAs) during the wort boiling, in cis- and trans- configuration, providing foam quality and the characteristic bitter taste of beer. In this work, is reported that these compounds undergo degradation photosensitized by flavins (Φ = 4,8x10-3 mol einstein-1), even in the presence of phenolic compounds (ferulic acid, Φ = 2,0x10-3 mol einstein-1) in 10-fold molar excess, suggesting that radicals formed during the deactivation of triplet excited state of riboflavin by phenolic compounds may be involved in the degradation of IAAs. Dimers and trimers derived from ferulic and p-coumaric acids were identified by LC-ESI-IT-MS as the main photoproducts of the phenolic compounds. We report the reactivity of the different diastereoisomers of IAAs towards the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical, as a model for peroxyl radical, k2 = 0,41 e 1,3 L mol-1 s-1 for the reaction with cis-IAA and trans-IAA in ethanol acidified with 1% of formic acid, at the temperature of 25 °C, respectively. These specifics rate constants suggest that the degradation of the bitter acids via thermal reactions in an radicaloid process is important during the storage of the product since the reaction rate constant for IAAs and the DPPH• radical are competitive with the reaction rate constants for naturally occurring antioxidants in beer with the DPPH• radical ([ferulic acid] = 0,2mg/Lbeer; k2 = 1,18.102 M-1s-1). The analysis of the thermodynamical data (IAAs mixture, ΔH‡ = 25 kJ mol-1 e ΔS‡ = -155 J mol-1 K-1) suggest a HAT/PCET oxidation mechanism of IAAs by DPPH• radical. The difference of reactivity observed for the diastereoisomers (cis-/trans-) is possibly related to the stereochemical arrangement of the isohexonoyl and prenyl side chains connected to C(4) and C(5) carbons, respectively. In this way, is suggested that the spatial proximity of the insaturation sites in the trans- species lead to a increase in electronic density or due to a statistical factor since the allylic-H are close spatially, which favors the oxidation via radicaloid.

Page generated in 0.0487 seconds