Spelling suggestions: "subject:"ripe"" "subject:"rip""
1 |
Necroptosis, a Potential Therapeutic Target for Neurological DisordersChen, Jing, Kostrzewa, Richard M., Xu, Xingshun 01 January 2014 (has links)
Necrosis is considered to be an unregulated and chaotic cell death. However, recent advances in cell death strategies support necroptosis as a form of regulated programmed necrotic cell death. In response to TNF-a or Fas ligands, necroptosis can be induced by cell death receptors in multiple cell lines in the presence of a caspase inhibitor z-VAD; necroptotic cell death has been found to play an important role in normal development, immunity, inflammation, cancer, and human diseases. In this chapter, the molecular mechanisms governing necroptosis, recent findings about the upstream and downstream schema of necroptosis, and potential therapeutic targets in neurological disorders are discussed. After being activated by TNF-a (or Fas ligands) and death receptors, receptor-interacting proteins 1 and 3 (RIP1 and RIP3) form a complex, which play a central role in the induction of necroptosis. RIP3 phosphorylates and activates mitochondrial proteins mixed lineage kinase domain-like protein (MLKL) and PGAM5, resulting in the execution of necroptosis by dynamin-related protein 1, the GTPase that controls mitochondrial fission. Some small molecules such as necrostain-1 and necrosulfonamide target different steps of necroptosis and impede the progress of necroptosis. FADD, caspase-8, CLIP, and CYLD positively or negatively regulate RIP1-/RIP3-dependent necroptosis by different mechanisms. Recent studies demonstrate the involvement of necroptosis in many neurological disorders including stroke, trauma, neonatal hypoxic-ischemic encephalopathy, and Huntington's disease. As a potential therapeutic target, the understanding of necroptotic mechanisms will provide new insights to develop more potent neuroprotectants and specific therapeutic strategies for clinical treatments of neurological disorders.
|
2 |
RIP1 and FADD's Role in Innate ImmunityHyun, Jinhee 10 May 2011 (has links)
Rapid production of type I Interferon is pivotal to initiate cellular antiviral host defense and adaptive immunity. In order to facilitate innate immune processes, a cell harbors pattern recognition receptors (PRRs) which sense distinctive forms of pathogen associated molecular patterns (PAMPs). For example, Toll like receptors (TLRs) and RIG-I like receptors (RLRs) were discovered as PRRs for pathogen derived molecules and the production of type I Interferon (IFN). To induce type I IFN, several transcription factors such as nuclear factor-kappaB (NF-ĸB), interferon regulatory factor 3 (IRF3), interferon regulatory factor 7 (IRF7), and activating protein-1 (AP-1) need to be stimulated through the specific signaling adaptors. Among them, our lab is interesting in the death domain (DD) containing proteins Receptor interacting kinase1 (RIP1) and Fas-associated death domain protein (FADD), which we showed were important for innate signaling processes. RIP1 and FADD were initially identified as Fas and TNFR interacting proteins which were involved in death receptor mediated apoptosis. Aside from apopotic function, recent publications indicate that RIP1 and FADD mediate cell survival, proliferation, and cytokine production through NF-ĸB activation. Here, we show that RIP1 and FADD are essential for efficient TLR-independent signaling. We report that RIP1 and FADD lacking MEF cells are sensitive to viral cytolysis and also exhibit impaired IFN production against dsRNA virus infection. RIP1 acts as a scaffolding protein for death receptor mediated apoptosis and NF-ĸB activation, necrosis, and innate immunity. As mentioned, we demonstrate that cells lacking RIP1 are sensitive to RNA virus infection. To understand the detailed mechanisms of RIP1 function in innate signaling, we first tested whether RIP1 is involved in RIG-I signaling. We found that RIP1 forms a complex with RIG-I in the presence of dsRNA. Additionally, we showed that RIP1 is required for optimal RIG-I and melanoma differentiation-associated protein 5 (MDA-5) activity. We also find that FADD, a RIP1 interaction protein, is implicated in innate immunity. To study the precise mechanisms of FADD in type I IFN signaling, we generated FADD variants and used luciferase reporter assays to indicate that the FADD death effector domain (DED) is crucial for IFN-β signaling. In order to identify interacting partners of FADD, yeast two hybrid assays were performed and indicated that FADD binds to protein inhibitor of activated STAT (PIAS1), part of the SUMO machinery. SUMOylation is a reversible post-translational modification of a protein by SUMO, a 100 amino acid protein. The consequence of SUMOylation alters specific proteins’ function by affecting activity, localization, stability or influencing molecular interactions by interfering with or linking to a target protein. To confirm FADD-PIAS interactions, we conducted in-vitro SUMOylation assays by using Ubc9 conjugated FADD and found possible FADD SUMOylation sites. We also discovered that FADD and SUMO are co-localized in the nucleus. This result reveals that FADD undergoes SUMOylations and its modification might regulate FADD’s function, including role in innate signaling. Furthermore, we report here that HTLV-1 Tax protein interacts with RIP1 and inhibits IFN-β inducing signaling by abrogating RIP1 and IRF7 interaction. This implies that RIP1 is involved in the regulation of IRF7 and is essential for IFN-β production. Collectively, our data demonstrate the significance of RIP1 and FADD in dsRNA recognition pathways in mammalian cells that are essential for the optimal induction of type I IFNs and other innate genes important for host defense.
|
3 |
Screening for activators of NF-kB using Sleeping Beauty TransposonsDasgupta, Maupali 01 February 2008 (has links)
No description available.
|
4 |
Effet anti-tumoral de l'acide docosahexaénoïque : implication des microARNs et du TNFalpha / Anti-tumor effect of docosahexaenoic acid : involvement of microRNAs and TNFαFluckiger, Aurélie 15 December 2015 (has links)
L’acide docosahexaénoïque (DHA) est un acide gras polyinsaturé oméga-3 avec des propriétés anti-inflammatoires et anti-tumorales. L’effet du DHA dans le cadre du cancer colorectal pourrait être la conséquence d'une action anti-proliférative directe sur les cellules cancéreuses et de sa capacité à réduire l’inflammation propice au développement de la tumeur. Le Tumor Necrosis Factor-alpha (TNFa) est une cytokine pro-inflammatoire et présente des effets paradoxaux. En fonction du contexte cellulaire, le TNFa activera une voie de signalisation dépendante de la kinase RIP1 engageant la cellule cancéreuse vers la prolifération ou la mort cellulaire. Notre objectif fut d'évaluer le rôle du TNFa dans l'effet anti-prolifératif du DHA sur des cellules cancéreuses coliques et de préciser les mécanismes moléculaires régulant l'expression de cette cytokine. Le DHA induit l'expression de TNFa et sa sécrétion par les cellules cancéreuses. Nous avons montré que des anticorps neutralisant l'action autocrine du TNFa sur les cellules cancéreuses prévenait l'effet pro-apoptotique du DHA et abolissait l'effet anti-cancéreux observé dans des souris nude avec tumeurs HCT-116 sous régime DHA. L’induction de l'expression de TNFa par le DHA prend son origine à un niveau post-transcriptionnel par la répression du microARN miR-21 perdant sa capacité à dégrader l'ARNm TNFa. Le DHA par l'activation des kinases AMPKa et RIP1 déclenche la translocation nucléaire du facteur de transcription FOXO3a se fixant sur le promoteur miR-21 et diminuant l’expression de ce microARN. Nos travaux mettent en évidence un nouveau mécanisme moléculaire soutenant l'action anti-tumorale du DHA. / Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid with anti-inflammatory and anti-tumoral properties. The anti-tumor effect of DHA in colorectal cancer might be attributed to direct anti-proliferative action on cancer cells and to its ability to reduce inflammatory status involved in tumor growth. Tumor Necrosis Factor-alpha (TNFa) is an inflammatory cytokine with paradoxical effect in cancer biology. According to the cellular context, TNFa activates RIP1 kinase dependent signaling pathway leading to proliferation or cell death. Our aim was to evaluate the role of TNFa in anti-proliferative effect of DHA in colon cancer cells and to precise the molecular mechanisms regulating TNFa expression.DHA treatment increased TNFa expression and secretion by cancer cells. We have shown that neutralization of autocrine TNFa action prevented the pro-apoptotic effect of DHA colon cancer cells and abolished anti-cancer effect in tumor HCT-116 bearing nude mice fed a DHA-enriched diet. Induction of TNFa expression by DHA occured at post-transcriptional level through microRNA miR-21 repression reducing its ability to induce TNFa mRNA degradation. DHA activates AMPKa and RIP1 kinases triggering nuclear translocation of the transcription factor Foxo3a which bound to miR-21 promoter and repressed the microRNA expression. Our works highlight a new molecular mechanism supporting the anti-cancer action of DHA.
|
5 |
Étude de la fonction anti-apoptotique de la sous-unité R1 de la ribonucléotide réductase des virus de l’herpès simplexDufour, Florent 08 1900 (has links)
L’élimination des cellules infectées par apoptose constitue un mécanisme de défense antivirale. Les virus de l’herpès simplex (HSV) de type 1 et 2 encodent des facteurs qui inhibent l’apoptose induite par la réponse antivirale. La sous-unité R1 de la ribonucléotide réductase d’HSV-2 (ICP10) possède une fonction anti-apoptotique qui protège les cellules épithéliales de l’apoptose induite par les récepteurs de mort en agissant en amont ou au niveau de l’activation de la procaspase-8. Puisqu’une infection avec un mutant HSV-1 déficient pour la R1 diminue la résistance des cellules infectées vis à vis du TNFα, il a été suggéré que la R1 d’HSV-1 (ICP6) pourrait posséder une fonction anti-apoptotique. Le but principal de cette thèse est d’étudier le mécanisme et le potentiel de la fonction anti-apoptotique de la R1 d’HSV-1 et de la R1 d'HSV-2.
Dans une première étude, nous avons investigué le mécanisme de la fonction anti-apoptotique de la R1 d’HSV en utilisant le TNFα et le FasL, deux inducteurs des récepteurs de mort impliqués dans la réponse immune anti-HSV. Cette étude a permis d’obtenir trois principaux résultats concernant la fonction anti-apoptotique de la R1 d’HSV. Premièrement, la R1 d’HSV-1 inhibe l’apoptose induite par le TNFα et par le FasL aussi efficacement que la R1 d’HSV-2. Deuxièmement, la R1 d’HSV-1 est essentielle à l’inhibition de l’apoptose induite par le FasL. Troisièmement, la R1 d’HSV interagit constitutivement avec la procaspase-8 d’une manière qui inhibe la dimérisation et donc l’activation de la caspase-8. Ces résultats suggèrent qu’en plus d’inhiber l’apoptose induite par les récepteurs de mort la R1 d’HSV peut prévenir l’activation de la caspase-8 induite par d’autres stimuli pro-apoptotiques. Les ARN double-brins (ARNdb) constituant un intermédiaire de la transcription du génome des HSV et activant l’apoptose par une voie dépendante de la caspase-8, nous avons testé dans une seconde étude l’impact de la R1 d’HSV sur l’apoptose induite par l’acide polyriboinosinique : polyribocytidylique (poly(I:C)), un analogue synthétique des ARNdb. Ces travaux ont montré qu’une infection avec les HSV protège les cellules épithéliales de l’apoptose induite par le poly(I:C). La R1 d’HSV-1 joue un rôle majeur dans l’inhibition de l’activation de la caspase-8 induite par le poly(I:C). La R1 d’HSV interagit non seulement avec la procaspase-8 mais aussi avec RIP1 (receptor interacting protein 1). En interagissant avec RIP1, la R1 d’HSV-2 inhibe l’interaction entre RIP1 et TRIF (Toll/interleukine-1 receptor-domain-containing adapter-inducing interferon β), l’adaptateur du Toll-like receptor 3 qui est un détecteur d’ARNdb , laquelle est essentielle pour signaler l’apoptose induite par le poly(I:C) extracellulaire et la surexpression de TRIF.
Ces travaux démontrent la capacité de la R1 d’HSV à inhiber l’apoptose induite par divers stimuli et ils ont permis de déterminer le mécanisme de l’activité anti-apoptotique de la R1 d’HSV. Très tôt durant l’infection, cFLIP, un inhibiteur cellulaire de la caspase-8, est dégradé alors que la R1 d’HSV s’accumule de manière concomitante. En interagissant avec la procapsase-8 et RIP1, la R1 d’HSV se comporte comme un inhibiteur viral de l’activation de la procaspase-8 inhibant l’apoptose induite par les récepteurs de mort et les détecteurs aux ARNdb. / Elimination of infected cells by apoptosis constitutes an ancestral mechanism of host defense against viral infection. Herpes simplex viruses (HSVs) encode several viral factors to counteract the apoptotic antiviral response. Among them, the R1 subunit of HSV type-2 ribonucleotide reductase (HSV-2 R1, also named ICP10), protects cells by interrupting death receptor-mediated signaling at, or upstream of, caspase-8 activation. Since protection against tumor necrosis factor alpha (TNFα)-induced apoptosis is decreased un cells infected with an HSV type-1 R1 null mutant, it has been proposed that HSV-1 R1 (ICP6) could also possess an antiapoptotic activity. The fundamental goal of this thesis is to better understand the mechanism and the potential of the HSV R1s antiapoptotic activity.
In a first study, we investigated the mechanism of the antiapoptotic activity of HSV R1s by using TNFα and Fas ligand (FasL), two death-receptor inducers involved in anti-HSVs immune response. From this work, we report three main findings on the antiapoptotic activity of HSV R1s. First, HSV-1 R1 like HSV-2 R1 has the ability to protect cells against TNFα- and FasL-induced apoptosis. Second, HSV-1 R1 contributes in protecting infected cells against FasL. Third, HSV R1s and procaspase-8 interact in a way that inhibits the dimerization/activation of caspase-8. These results suggest that in addition to counteracting death receptor-induced apoptosis, HSV R1s could inhibit apoptosis induced by other signals that trigger caspase-8 activation during HSV infection. Double-stranded RNA (dsRNA) are viral intermediates notably produced by HSVs and have been shown to induce apoptosis via caspase-8 activation. We tested in a second study whether HSV R1s have the ability to counteract apoptosis triggered by polyriboinosinic : polyribocytidylic acid (poly(I:C)), a synthetic analog of dsRNA that triggers caspase-8 activation. We showed that HSVs infection protect epithelial cells from apoptosis induced by poly(I:C). We established that HSV-1 R1 is essential for the protection of HSV-1-infected cells against poly(I:C)-induced caspase-8 activation. HSV R1s interact not only with procaspase-8 but also with the receptor interacting protein 1 (RIP1). The interaction between RIP1 and HSV-2 R1 inhibits the binding of RIP1 to the Toll/interleukine-1 receptor-domain-containing adapter-inducing interferon β (TRIF), the adaptor of Toll-like receptor 3 that is an extracellular dsRNA sensor, which is required to activate caspase-8 following extracellular poly(I:C) stimulation and TRIF overexpression. Thus, HSV R1s have the ability to inhibit poly(I:C)-induced apoptosis at several levels by preventing caspase-8 dimerization/activation and TRIF RIP1 interaction.
This work sheds light on the ability of HSV R1s to manipulate apoptosis. Early during the lytic cycle, protein levels of the cellular inhibitors of caspase-8 as cFLIP drop but HSV R1s accumulate concomitantly and act as a viral inhibitor of apoptosis by binding to procaspase-8 and RIP1 in a way that impairs caspase-8 activation by death-receptors and dsRNA detectors stimulation.
|
6 |
Étude de la fonction anti-apoptotique de la sous-unité R1 de la ribonucléotide réductase des virus de l’herpès simplexDufour, Florent 08 1900 (has links)
L’élimination des cellules infectées par apoptose constitue un mécanisme de défense antivirale. Les virus de l’herpès simplex (HSV) de type 1 et 2 encodent des facteurs qui inhibent l’apoptose induite par la réponse antivirale. La sous-unité R1 de la ribonucléotide réductase d’HSV-2 (ICP10) possède une fonction anti-apoptotique qui protège les cellules épithéliales de l’apoptose induite par les récepteurs de mort en agissant en amont ou au niveau de l’activation de la procaspase-8. Puisqu’une infection avec un mutant HSV-1 déficient pour la R1 diminue la résistance des cellules infectées vis à vis du TNFα, il a été suggéré que la R1 d’HSV-1 (ICP6) pourrait posséder une fonction anti-apoptotique. Le but principal de cette thèse est d’étudier le mécanisme et le potentiel de la fonction anti-apoptotique de la R1 d’HSV-1 et de la R1 d'HSV-2.
Dans une première étude, nous avons investigué le mécanisme de la fonction anti-apoptotique de la R1 d’HSV en utilisant le TNFα et le FasL, deux inducteurs des récepteurs de mort impliqués dans la réponse immune anti-HSV. Cette étude a permis d’obtenir trois principaux résultats concernant la fonction anti-apoptotique de la R1 d’HSV. Premièrement, la R1 d’HSV-1 inhibe l’apoptose induite par le TNFα et par le FasL aussi efficacement que la R1 d’HSV-2. Deuxièmement, la R1 d’HSV-1 est essentielle à l’inhibition de l’apoptose induite par le FasL. Troisièmement, la R1 d’HSV interagit constitutivement avec la procaspase-8 d’une manière qui inhibe la dimérisation et donc l’activation de la caspase-8. Ces résultats suggèrent qu’en plus d’inhiber l’apoptose induite par les récepteurs de mort la R1 d’HSV peut prévenir l’activation de la caspase-8 induite par d’autres stimuli pro-apoptotiques. Les ARN double-brins (ARNdb) constituant un intermédiaire de la transcription du génome des HSV et activant l’apoptose par une voie dépendante de la caspase-8, nous avons testé dans une seconde étude l’impact de la R1 d’HSV sur l’apoptose induite par l’acide polyriboinosinique : polyribocytidylique (poly(I:C)), un analogue synthétique des ARNdb. Ces travaux ont montré qu’une infection avec les HSV protège les cellules épithéliales de l’apoptose induite par le poly(I:C). La R1 d’HSV-1 joue un rôle majeur dans l’inhibition de l’activation de la caspase-8 induite par le poly(I:C). La R1 d’HSV interagit non seulement avec la procaspase-8 mais aussi avec RIP1 (receptor interacting protein 1). En interagissant avec RIP1, la R1 d’HSV-2 inhibe l’interaction entre RIP1 et TRIF (Toll/interleukine-1 receptor-domain-containing adapter-inducing interferon β), l’adaptateur du Toll-like receptor 3 qui est un détecteur d’ARNdb , laquelle est essentielle pour signaler l’apoptose induite par le poly(I:C) extracellulaire et la surexpression de TRIF.
Ces travaux démontrent la capacité de la R1 d’HSV à inhiber l’apoptose induite par divers stimuli et ils ont permis de déterminer le mécanisme de l’activité anti-apoptotique de la R1 d’HSV. Très tôt durant l’infection, cFLIP, un inhibiteur cellulaire de la caspase-8, est dégradé alors que la R1 d’HSV s’accumule de manière concomitante. En interagissant avec la procapsase-8 et RIP1, la R1 d’HSV se comporte comme un inhibiteur viral de l’activation de la procaspase-8 inhibant l’apoptose induite par les récepteurs de mort et les détecteurs aux ARNdb. / Elimination of infected cells by apoptosis constitutes an ancestral mechanism of host defense against viral infection. Herpes simplex viruses (HSVs) encode several viral factors to counteract the apoptotic antiviral response. Among them, the R1 subunit of HSV type-2 ribonucleotide reductase (HSV-2 R1, also named ICP10), protects cells by interrupting death receptor-mediated signaling at, or upstream of, caspase-8 activation. Since protection against tumor necrosis factor alpha (TNFα)-induced apoptosis is decreased un cells infected with an HSV type-1 R1 null mutant, it has been proposed that HSV-1 R1 (ICP6) could also possess an antiapoptotic activity. The fundamental goal of this thesis is to better understand the mechanism and the potential of the HSV R1s antiapoptotic activity.
In a first study, we investigated the mechanism of the antiapoptotic activity of HSV R1s by using TNFα and Fas ligand (FasL), two death-receptor inducers involved in anti-HSVs immune response. From this work, we report three main findings on the antiapoptotic activity of HSV R1s. First, HSV-1 R1 like HSV-2 R1 has the ability to protect cells against TNFα- and FasL-induced apoptosis. Second, HSV-1 R1 contributes in protecting infected cells against FasL. Third, HSV R1s and procaspase-8 interact in a way that inhibits the dimerization/activation of caspase-8. These results suggest that in addition to counteracting death receptor-induced apoptosis, HSV R1s could inhibit apoptosis induced by other signals that trigger caspase-8 activation during HSV infection. Double-stranded RNA (dsRNA) are viral intermediates notably produced by HSVs and have been shown to induce apoptosis via caspase-8 activation. We tested in a second study whether HSV R1s have the ability to counteract apoptosis triggered by polyriboinosinic : polyribocytidylic acid (poly(I:C)), a synthetic analog of dsRNA that triggers caspase-8 activation. We showed that HSVs infection protect epithelial cells from apoptosis induced by poly(I:C). We established that HSV-1 R1 is essential for the protection of HSV-1-infected cells against poly(I:C)-induced caspase-8 activation. HSV R1s interact not only with procaspase-8 but also with the receptor interacting protein 1 (RIP1). The interaction between RIP1 and HSV-2 R1 inhibits the binding of RIP1 to the Toll/interleukine-1 receptor-domain-containing adapter-inducing interferon β (TRIF), the adaptor of Toll-like receptor 3 that is an extracellular dsRNA sensor, which is required to activate caspase-8 following extracellular poly(I:C) stimulation and TRIF overexpression. Thus, HSV R1s have the ability to inhibit poly(I:C)-induced apoptosis at several levels by preventing caspase-8 dimerization/activation and TRIF RIP1 interaction.
This work sheds light on the ability of HSV R1s to manipulate apoptosis. Early during the lytic cycle, protein levels of the cellular inhibitors of caspase-8 as cFLIP drop but HSV R1s accumulate concomitantly and act as a viral inhibitor of apoptosis by binding to procaspase-8 and RIP1 in a way that impairs caspase-8 activation by death-receptors and dsRNA detectors stimulation.
|
7 |
Do Serglycin Related Alterations of Thrombocytes and Myeloid Cells Affect Tumor Progression and BehaviorHjelle, Kjersti Marie January 2015 (has links)
Investigation of tumor growth has traditionally been studied focusing only on the cancer cells. However, tumors consist of a complex tissue organization where heterotypic signaling occurs between different cell types. The cross-talk between tumor cells and other surrounding cell types may ultimately prove to be as important for the tumor cell behavior as the internal signaling cascades in the tumor cell itself.Myeloid cells, such as granulocytes and monocytes, and thrombocytes play an important role in the tumor tissue, as a tumor can be compared to a wound healing process without the normal regulation mechanisms. Platelets are thought to facilitate tumor cell extravasation by binding to the tumor cell and recruiting myeloid cells that secrete factors aiding tumor migration through the endothelial cells. Studying the content of granules and vesicles of the platelets and myeloid cells can provide important knowledge about how the tumor interactions are mediated and which key proteins that controls these processes.Serglycin is an intracellular proteoglycan that attaches chains of negatively charged glycosaminoglycans. It is thought to have a function in retaining and storing proteins in hematipoietic cells. In this project the impact of the loss of serglycin on platelets and myeloid cells was investigated, using a spontaneous insulinoma serglycin knockout mouse model. The results suggests that serglycin does not affect the amount of neutrophil granulocytes and monocytes in peripheral blood, nor does it seem to affect the amount of platelets sequestered to the tumor tissue. A co-staining for platelets and MMP9 positive granulocytes was also performed in order to assess if granulocyte-platelet interactions in the tumor were affected by loss of serglycin. Interactions between these cells were observed in both genotypes. Von Willebrand factor levels in the tumor tissue also remained unchanged upon loss of serglycin. However, preliminary experiments indicated that serglycin seems to play a role in the intracellular amounts of vimentin and VEGFB in undifferentiated primary bone marrow derived monocytes.
|
8 |
Understanding the Regulatory Steps that Govern the Activation of Mycobacterium Tuberculosis σKShukla, Jinal K January 2013 (has links) (PDF)
A distinctive feature of host-pathogen interactions in the case of Mycobacterium tuberculosis is the asymptomatic latent phase of infection. The ability of the bacillus to survive for extended periods of time in the host suggests an adaptive mechanism in M. tuberculosis that can cope with a variety of environmental stresses and other host stimuli. Extensive genomic studies and analysis of knock-out phenotypes revealed elaborate cellular machinery in M. tuberculosis that ensures a rapid cellular response to host stimuli. Prominent amongst these are two-component systems and σ factors that exclusively govern transcription re-engineering in response to environmental stimuli. M. tuberculosis σK is a σ factor that was demonstrated to control the expression of secreted antigenic proteins. The study reported in this thesis was geared to understand the molecular basis for σK activity as well as to explore conditions that would regulate σK activity.
Transcription in bacteria is driven by the RNA polymerase enzyme that can associate with multiple σ factors. σ factors confer promoter specificity and thus directly control the expression of genes. The association of different σ factors with the RNA polymerase is essential for the temporal and conditional re-engineering of the expression profile. Environment induced changes in expression rely on a subset of σ factors. This class of σ factors (also referred to as Class IV or Extra-cytoplasmic function (ECF) σ factors) is regulated by a variety of mechanisms. The regulation of an ECF σ factor activity at the transcriptional, translational or posttranslational steps ensures fidelity in the cellular concentration of free, active ECF σ factors. In general, ECF σ factors associate with an inhibitory protein referred to as an anti-σ factor. The release of a free, active σ factor from a σ /anti-σ complex is thus a mechanism that can potentially control the cellular levels of an active σ factor in the cell.
M. tuberculosis σK is associated with a membrane bound anti-σK (also referred to as RskA) (Said-Salim et al., Molecular Microbiology 62: 1251-1263: 2006). The extracellular stimulus that is recognized by RskA remains unclear. However, recent studies have suggested the possibility of a regulated proteolytic cascade that can selectively degrade RskA and other membrane associated anti-σ factors. The goal of the study was to understand this regulatory mechanism with a specific focus on the M. tuberculosis σK/RskA complex.
The structure of the cytosolic σK/RskA complex and the associated biochemical and biophysical characteristics revealed several features of this /anti-σ complex that were hitherto unclear. In particular, these studies revealed a redox sensitive regulatory mechanism in addition to a regulated proteolytic cascade. These features and an analysis of the M. tuberculosis σK/RskA complex vis-à-vis the other characterized σ/anti σfactor complexes are presented in this thesis. This thesis is organized as follows-
Chapter 1 provides an overview of prokaryotic transcription. A brief description of the physiology of M. tuberculosis is presented along with a summary of characterized factors that contribute to the pathogenecity and virulence of this bacillus. The pertinent mechanistic issues of σ/anti-σ factor interactions are placed in the context of environment mediated changes in M. tuberculosis transcription. A summary of studies in this area provides a background of the research leading to this thesis.
Chapters 2 and 3 of this thesis describe the structural and mechanistic studies on the σK/RskA complex. The crystal structure of the σK/RskA complex revealed a disulfide bond in domain 4 (σK4). σK4 interacts with the -35 element of the promoter DNA. The disulfide forming cysteines were seen to be conserved in more than 70% of σK homologs, across both gram-positive and gram-negative bacteria. The conservation of the disulfide-forming cysteines led us to further characterize the role of this disulfide in σK/RskA interactions. These were examined by several biochemical and biophysical experiments. The redox potential of these disulfide bond forming cysteine residues were consistent with the proposed role of a sensor. The crystal structure and biochemical studies thus suggest that M. tuberculosis σK is activated under reducing conditions.
Chapter 4 of this thesis describes the progress made thus far in the structural and biochemical characterization of an intra-membrane protease, M. tuberculosis Rip1 (Rv2869c). This protein is an essential component of the proteolytic cascade that selectively cleaves RskA. The proteolytic steps that govern the selective degradation of an anti-σ factor were first characterized in the case of E. coli σE (Li, X. et al. Proc. Natl. Acad. Sci. USA, 106:14837-14842, 2009). This cascade is triggered by the concerted action of a secreted protease (also referred to as a site-1 protease) and a trans-membrane protease (also referred to as a site-2 protease). M. tuberculosis Rip1 was demonstrated to be bona-fide site 2 protease that acts on three anti-σ factors viz., RskA, RslA and RsmA (Sklar et al., Molecular Microbiology 77:605-617; 2010). To further characterize the role of Rip1 in the proteolytic cascade, this intra-membrane protease was cloned, expressed and purified for structural, biochemical and biophysical analysis. The preliminary data on this membrane protein is described in this chapter.
The conclusions from the studies reported in this thesis and the scope for future work in this area is described in Chapter 5.
Put together, the σK/RskA complex revealed facets of σ/anti-σ factor interactions that were hitherto unrecognized. The most prominent amongst these is the finding that an ECF σfactor can respond to multiple environmental stimuli. Furthermore, as seen in the case of the σK/RskA complex, the σ factor can itself serve as a receptor for redox stimuli. Although speculative, a hypothesis that needs further study is whether these features of the σK/RskA complex contribute to the variable efficacy of the M. bovis BCG vaccine. In this context it is worth noting that σK governs the expression of the prominent secreted antigens- MPT70 and MPT83. The studies reported in this thesis thus suggest several avenues for future research to understand mycobacterial diversity, immunogenicity and features of host-pathogen interactions.
The appendix section is divided into two subparts-
Appendix 1 of the thesis is a review on peptidase V. This is a chapter in The Handbook of Proteolytic enzymes (Elsevier Press, ISBN:9780123822192).
Appendix 2 of the thesis includes technical details and an extended materials and methods section.
|
Page generated in 0.0486 seconds