• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Obrábění prostorových objektů pomocí průmyslového robotu / Robot machining of three-dimensional objects

Kolář, Bronislav January 2013 (has links)
This diploma thesis deals with the design of robot machining of three-dimensional objects. Used method is Part to tool, in which robot holds the part in its gripper and with stacionary clamped mill, machines the part. Overally three parts for machining are designed, everyone of them shows the different style of machining. Every machining operations are described in details. For their creation was used program Mastercam. Furthermore is described transfer of the data for industrial robot using program Robotmaster and recomanded algorithm for creation of similar tasks. The design of simplified workplace for demonstrative show of the milling of all the parts is also solved.
2

Metoda určování přesnosti obráběcích robotů / Method for evaluation accuracy of milling robots

Cabalka, Jan January 2015 (has links)
This thesis describes the design of methodology for measuring the accuracy of robot machining. It describes the theoretical properties and classification of commercially available methods for precision measurement. In the practical part, a test workpiece is manufactured and positions and toolpaths are measured by the Pontos system. The proposals are based on the MCAE Systems company's equipment.
3

G-Code to RAPID translator for Robot-Studio

Nilsson, Daniel January 2016 (has links)
With the emerging development of new technology and the constantly falling prices, more companies will find interest in industrial robots. Until today, the typical robot users have been large scale car manufacturers. But there exists a big potential market within the small to medium businesses that already uses of CNC machines. Attracting smaller businesses to start using industrial robots could open up the doors to new possibilities and increase their production. Unfortunately, most people still lack the knowledge of operating and programming industrial robots. But many companies have knowledge in G-code which is normally used in CNC machines. That is why this work is focussing on the development of a software that opens up the possibility to make use of G-code to program advanced robot paths with minimal user input. By striving for easier handling of robots, the vision about a more efficient and automated society will become one step closer. The introduction straightens out the different basic principles of CNC milling machines and robots. This will introduce the reader and highlight the different similarities and differences that exist between robots and CNC mills. The goal of this work has been to create an add-in application for ABB’s off-line programming software RobotStudio that was able to import at least one type of file format commonly used for CNC milling. The program should be able to handle some basic functionality, the focus has been on the standard iso6983 type of G-code. The project started with a literature study that gave the author a better insight in both the previous research within the area but also deeper knowledge of the systems CNC mills and robots. The work continued with the development of a software able to import the specified file format. The software has been built in C# and is built as an add-in software for ABB’s offline programming software RobotStudio. The result presents a software that is able to read different types of G-code and translate them into generated paths in RobotStudio. The software also has an inbuilt function in order to parameterize the G02 and G03 commands that represent curves in G-code into straight line segments of the type MoveL in RobotStudio.
4

Identification et modélisation du comportement dynamique des robots d'usinage / Identification and modeling of machining robots' dynamic behavior

Mejri, Seifeddine 08 April 2016 (has links)
La robotisation des procédés d’usinage suscite l’intérêt des industriels en raison du grand espace de travail et le faible coût des robots par rapport aux machines-outils conventionnelles et la possibilité d’usiner des pièces de formes complexes. Cependant, la faible rigidité de la structure robotique favorise le déclenchement de phénomènes dynamiques liés à l’usinage sollicitant le robot en bout de l’outil qui dégradent la qualité de surface de la pièce usinée. L’objectif de ces travaux de thèse est de caractériser le comportement dynamique des robots en usinage. Ces travaux ont suivi une démarche en trois étapes : La modélisation d’un premier modèle considéré de référence où le robot est au repos. Ensuite l’identification du comportement dynamique du robot en service. Enfin, l’exploitation des modèles dynamiques du robot en vue de prédire la stabilité de coupe. L’originalité de ces travaux porte sur le développement des méthodes d’identification modale opérationnelles. Elles permettent d’intégrer les conditions réelles d’usinage et d’élaborer des modèles plus précis que le premier modèle de connaissance sans être biaisés par l’effet des harmoniques de rotation de l’outil. Enfin, des préconisations sur le choix de configurations du robot et sur la direction des forces d’excitation sont proposées pour assurer la stabilité de la coupe lors de l’usinage robotisé. / Machining robots have major advantages over cartesian machine tools because of their flexibility, their ability to reach inaccessible areas on a complex part, and their important workspace. However, their lack of rigidity and precision is still a limit for precision tasks. The stresses generated by the cutting forces and inertia are important and cause static and dynamic deformations of the structure which result in problems of workpiece surface. The aim of the thesis work is to characterize the dynamic behavior of robots during machining operation. This work followed a three-step approach : Modeling a first model considered as a reference where the robot is at rest. Then the identification of the dynamic behavior in service. Finally, the prediction of the cutting stability using the robot dynamic model. The originality of this work is the development of new operational modal identification methods. They integrate the machining conditions and result into a more accurate model than the first model of reference without being biased by harmonics. Finally, guidlines of robot’s configurations and excitation forces’ direction are proposed to ensure the robotic machining stability.

Page generated in 0.091 seconds