• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 9
  • 7
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 97
  • 97
  • 34
  • 33
  • 26
  • 24
  • 15
  • 14
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

A robust multi-objective statistical improvement approach to electric power portfolio selection

Murphy, Jonathan Rodgers 13 November 2012 (has links)
Motivated by an electric power portfolio selection problem, a sampling method is developed for simulation-based robust design that builds on existing multi-objective statistical improvement methods. It uses a Bayesian surrogate model regressed on both design and noise variables, and makes use of methods for estimating epistemic model uncertainty in environmental uncertainty metrics. Regions of the design space are sequentially sampled in a manner that balances exploration of unknown designs and exploitation of designs thought to be Pareto optimal, while regions of the noise space are sampled to improve knowledge of the environmental uncertainty. A scalable test problem is used to compare the method with design of experiments (DoE) and crossed array methods, and the method is found to be more efficient for restrictive sample budgets. Experiments with the same test problem are used to study the sensitivity of the methods to numbers of design and noise variables. Lastly, the method is demonstrated on an electric power portfolio simulation code.
52

Robust Design of Multilevel Systems Using Design Templates

Muchnick, Hannah 05 April 2007 (has links)
Traditional methods in engineering design involve producing solutions at a single level. However, in complex engineering design problems, such as concurrent product and materials design, various levels of model complexity are considered. A design process in which design problems are defined and analyzed at various levels of design complexity is referred to as multilevel design. One example of multilevel design is the design of a material, product, assembly, and system. Dividing a design problem into multiple levels increases the possibility for introducing and propagating uncertainty. Design solutions that perform predictably in the presence of uncertainty are robust designs. Robust design concepts that were originally developed for designs at a single level can be applied to a multilevel design process. The Inductive Design Exploration Method (IDEM) is an existing design method used to produce robust multilevel design solutions. In this thesis, the strategy presented in IDEM is incorporated into design templates in order to extend its overall usefulness. Design templates are generic, reusable, modules that provide the theoretical and computational framework for solving design problems. Information collected, stored, and analyzed from design templates is leveraged for a variety of design problems. In this thesis, the possibilities of a template-based approach to multilevel design are explored. Two example problems, which employ the developed multilevel robust design template, are considered. Multilevel design templates are created for the design of a cantilever beam and its associated material and the design of a blast resistant panel. The design templates developed for example problems can be extended to facilitate a generic, modular, template-based approach to multilevel robust design.
53

A Method For Robust Design Of Products Or Processes With Categorical Response

Erdural, Serkan 01 December 2006 (has links) (PDF)
In industrial processes decreasing variation is very important while achieving the targets. For manufacturers, finding out optimal settings of product and process parameters that are capable of producing desired results under great conditions is crucial. In most cases, the quality response is measured on a continuous scale. However, in some cases, the desired quality response may be qualitative (categorical). There are many effective methods to design robust products/process through industrial experimentation when the response variable is continuous. But methods proposed so far in the literature for robust design with categorical response variables have various limitations. This study offers a simple and effective method for the analysis of categorical response data for robust product or process design. This method handles both location and dispersion effects to explore robust settings in an effective way. The method is illustrated on two cases: A foam molding process design and an iron-casting process design.
54

Robust Design With Binary Response Using Mahalanobis Taguci System

Yenidunya, Baris 01 August 2009 (has links) (PDF)
In industrial quality improvement and design studies, an important aim is to improve the product or process quality by determining factor levels that would result in satisfactory quality results. In these studies, quality characteristics that are qualitative are often encountered. Although there are many effective methods proposed for parameter optimization (robust design) with continuous responses, the methods available for qualitative responses are limited. In this study, a parameter optimization method for solving binary response robust design problems is proposed. The proposed method uses Mahalanobis Taguchi System to form a classification model that provides a distance function to separate the two response classes. Then, it finds the product/process variable settings that minimize the distance from the desired response class using quadratic programming. The proposed method is applied on two cases previously studied using Logistic Regression. The classification models are formed and the parameter optimization is conducted using the formed MTS models. The results are compared with those of the Logistic Regression. Conclusions and suggestions for future work are given.
55

Design and fabrication of flexible piezo-microgenerator with broadband width

Liu, Tong-Xin 15 July 2009 (has links)
In this study the relationship between the dynamic response of the flexible substrate and the power generation for energy harvesting system is proposed. High electro-mechanical transformation of piezoelectric materials, high efficient energy transfer of mechanical structure and controlled circuit make the piezoelectric generator a high performance. The devices of cantilevers with lump structures on the flexible substrate and piezoelectric film (ZnO) are designed. Then some individual layers of power generator are stocked in parallel to form a multi-layer system with a broad resonant band width. When the generator is operated in a wide frequency range vibration environment, the multi-layer piezoelectric films in the form of cantilever structures can induce current. First the finite element method for the piezoelectric cantilever beam is constructed by using ANSYS software. Both modal analysis and harmonic response analysis are performed to obtain the structural modal parameters and frequency response functions, respectively. Besides, the beam structure is modeled by 3D coupled field piezoelectric element. This research will apply Taguchi¡¦s method to design including variations of dimensions and material properties for energy harvesting system. The flexible substrate is polymeric film (PET). Imprinting process is applied to transfer the simulated geometric configuration onto a flexible substrate to obtain a maximum power output. The results show the single devices can improve efficiently by using lump structures on the flexible substrate, the generator could achieve maximum OCV of 2.25V which is 0.276£gW every centimeter squared when attached to a stable source of vibration. The multi-layer system can be used in 50~500Hz of low frequency environment. Furthermore, the output voltage (OCV) is upward when the flexible substrate with low Young¡¦s modulus.
56

Contribution à la conception préliminaire robuste en ingéniérie de produit / Contribution to the robust preliminary design in product engineering

Picheral, Laura 27 September 2013 (has links)
Les travaux présentés dans cette thèse portent sur la conception robuste de produit et plus particulièrement sur la phase de pré-dimensionnement dans le cas où un modèle de dimensionnement et un cahier des charges sont déjà définis. Une approche pour réaliser de l’optimisation robuste est proposée pour réduire la dispersion de la fonction objectif du cahier des charges du produit lorsque les paramètres de conception sont sujets aux incertitudes, conserver une bonne performance du produit et assurer une faisabilité des contraintes. Nous proposons ainsi la formulation d’un cahier des charges dit « robuste » transformant la fonction objectif et les contraintes du cahier des charges initial afin d’intégrer une notion de robustesse préalablement définie. La seconde contribution est une analyse des méthodes trouvées dans la littérature pour la propagation d’incertitudes à travers des modèles de dimensionnement. Les variations des paramètres sont alors modélisées par des dispersions probabilistes. L’analyse théorique du fonctionnement de chaque méthode est complétée par des tests permettant d’étudier la précision des résultats obtenus et de sélectionner la méthode utilisée par la suite. L’approche pour l’optimisation robuste de produit proposée dans ce travail est finalement mise en œuvre et testée sur deux études de cas. Elle intègre la méthode de propagation d’incertitudes dans une boucle de l’algorithme d’optimisation de manière à automatiser la recherche d’une solution optimale robuste pour le dimensionnement du produit. / The work presented in this thesis deals with the robust design of products. Particularly, it focuses on the design process preliminary phase where design models and specifications are already defined. A robust optimization approach is proposed. It aims to: reduce the scattering of the objective function included in the product specifications when the uncertainties reach the design parameters, maintain good performance of the product and ensure the constraints feasibility. We propose a new “robust” product specification that changes the objective function and the constraints of the initial specification in order to integrate the concept of robustness previously defined. The second contribution is an analysis of methods found in literature to propagate uncertainties across design models. Design parameter variations are modeled by probability distributions. The theoretical analysis of these methods is completed by numerous tests to investigate the accuracy of the results and to select the method used thereafter. The robust product optimization approach proposed in this work is finally implemented and tested on two case studies. It incorporates the propagation of uncertainties within the optimization loop to automate the search of a robust optimal solution for the design product.
57

Reliability Information and Testing Integration for New Product Design

January 2014 (has links)
abstract: In the three phases of the engineering design process (conceptual design, embodiment design and detailed design), traditional reliability information is scarce. However, there are different sources of information that provide reliability inputs while designing a new product. This research considered these sources to be further analyzed: reliability information from similar existing products denominated as parents, elicited experts' opinions, initial testing and the customer voice for creating design requirements. These sources were integrated with three novels approaches to produce reliability insights in the engineering design process, all under the Design for Reliability (DFR) philosophy. Firstly, an enhanced parenting process to assess reliability was presented. Using reliability information from parents it was possible to create a failure structure (parent matrix) to be compared against the new product. Then, expert opinions were elicited to provide the effects of the new design changes (parent factor). Combining those two elements resulted in a reliability assessment in early design process. Extending this approach into the conceptual design phase, a methodology was created to obtain a graphical reliability insight of a new product's concept. The approach can be summarized by three sequential steps: functional analysis, cognitive maps and Bayesian networks. These tools integrated the available information, created a graphical representation of the concept and provided quantitative reliability assessments. Lastly, to optimize resources when product testing is viable (e.g., detailed design) a type of accelerated life testing was recommended: the accelerated degradation tests. The potential for robust design engineering for this type of test was exploited. Then, robust design was achieved by setting the design factors at some levels such that the impact of stress factor variation on the degradation rate can be minimized. Finally, to validate the proposed approaches and methods, different case studies were presented. / Dissertation/Thesis / Doctoral Dissertation Industrial Engineering 2014
58

Feasibility study for geometry assurance in low volume manufacturing of complex products : With application in the shipbuilding industry

Ehrenberg, Henrik, Malmenryd, Filip January 2020 (has links)
Geometrical variation is an unavoidable aspect in all types of manufacturing that may, unless managed, risk failure in fulfilling product requirements which may result in rework, delays and bad publicity. The term geometry assurance includes the tools, methods and processes that can be utilized to manage the effects of geometrical variation and to ensure fulfillment of esthetical, functional and assembly requirements. While state of the art research in geometry assurance is extensively applied within the automotive and aerospace industries with great success, its application in low volume manufacturing of complex products remains limited. The shipbuilding industry is an example of such an industry, often manufacturing large and complex products in low quantities. Further, the shipbuilding industry has historically been labor-intensive and relied on craftsmanship throughout the product realization process. However, studies indicate that a technology-intensive development is crucial for companies in order to maintain market competitiveness. This transition places high demands on a well-established geometry assurance process in order to ensure successful assembly and fulfillment of product requirements.  In this thesis, a feasibility study is conducted on how geometry assurance may be applied in low volume manufacturing of complex products. By developing guidelines on how geometry assurance may be applied, the purpose is to improve geometrical quality throughout the product realization process and to reduce lead times, costs and increase assembly precision.  To explore the feasibility of geometry assurance in low volume manufacturing of complex products, a work structure consisting of three phases was established. In the first phase, a current state analysis of the collaboration partner Saab Kockums was conducted parallel to studying state of the art research in geometry assurance. In phase two, the state of practice of companies in the automotive and aerospace industries was studied in order to determine how they apply state of the art research. By interviewing industry specialists and combining gained knowledge from the first two phases, guidelines on how geometry assurance may be applied in low volume manufacturing of complex products was developed. In phase three, based on these guidelines, suggestions on how the geometry assurance process in pipe manufacturing at Saab Kockums can be improved was developed. The results of this study indicate that geometry assurance is applicable in low volume manufacturing of complex products. However, alternative methods may be required. Based on gained knowledge and insights from interviews with industry specialists, guidelines on how geometry assurance in low volume manufacturing of complex products may be applied are proposed. In order to improve the geometry assurance process in pipe manufacturing at Saab Kockums, this study proposes general guidelines for improvement along with a process and prototype measurement tool for the fitting-pipe methodology. The specially designed prototype measurement tool presents an alternative measurement method that can be used in cramped spaces where it is difficult to access with a 3D-measurement arm, the proposed primary measurement technique. In conclusion, this study indicates that geometry assurance is applicable in low volume manufacturing of complex products and suggests three methods for how it may be achieved. However, each of these methods needs to be further investigated in order to determine their applicability in other low volume manufacturing industries. Further, the prototype measurement tool and process for the fitting-pipe methodology indicates potential for improving the geometry assurance process in pipe manufacturing. However, further work is needed to complete the process for fitting-pipes and to finalize the prototype measurement tool for production use.
59

Combined Design and Control Optimization of Stochastic Dynamic Systems

Azad, Saeed 15 October 2020 (has links)
No description available.
60

Investigation of leakage contribution from different air seal components / Undersökning av läckagebidrad från olika lufttätningskomponenter

Guðjónsdóttir, Auður, Harðarson, Benedikt Árni January 2019 (has links)
Mountain biking is a sport where riders bike on trails, varying in slope and difficulty. Mountain bikes are generally equipped with suspension on the front wheel and often also on the rear. Some types of rear shocks use pressurized air for a spring action instead of the traditional metal coil. Air is sealed inside the shock’s air can by means of X-ring seals, providing a spring force on the wheel. It is of great importance that the sealing system performs as intended so the air spring does not quickly lose pressure during use. An experimental plan is conducted in an attempt to estimate the effects of seal dimension, lubrication and surface roughness on air leakage for more robust shocks. Accelerated tests were performed in a dynamometer, believed to repeatedly cause significant wear on the shock’s air seal within 24 hours. Nineteen tests were carried out, for a duration up to 72 hours, with variations to test parameters such as stroke length and frequency. The expected failure modes did not occur in any of them. Eleven tests showed no signs of failure while the other eight failed due to unexpected components breaking or wearing out. The shock’s main seal was found to wear out faster than the air seal, causing leakage within the air spring, between its positive and negative air chambers. This unforeseen failure needs further examination with tests conducted on more shock types. / Mountainbike är en sport där utövare åker på stigar med varierande lutning och svårighet. Terrängcyklar är generellt utrustade med stötdämpare eller fjädrar på framhjulet och ofta också på bakhjulet. Vissa terrängcyklar har stötdämpare bak som använder trycksatt luft för att dämpa istället för att använda traditionella stålfjädrar. Luften är sluten inuti stötdämparen med hjälp av X-rings tätningar, vilket ger en fjäderkraft på hjulet. Det är viktigt att tätningen fungerar så att luftfjädern inte snabbt tappar trycket när den används. En experimentplan skapades i ett försök att uppskatta effekten av tätningsdimension, smörjning och ytjämnhet på luftläckage för mer robusta stötdämpare. Accelererade tester gjordes i en dynamometer, som troddes kunna skapa signifikant slitage på en stötdämpares tätning inom 24 timmar upprepade gånger. 19 test gjordes med en körtid på upp till 72 timmar med variation av testparametrar som slaglängd och frekvens. De förväntade felkällorna uppstod inte i något av testerna. 11 tester visade inga tecken på fel medan 8 tester misslyckades på grund av att oväntade komponenter slets ut eller gick sönder. Stötdämparens huvudtätning visade sig slitas fortare än lufttätningen, vilket resulterade i läckage inuti luftfjädern mellan dess positiva och negativa kammare. Detta oförutsedda fel behöver vidare undersökning med tester på fler olika typer av stötdämpare.

Page generated in 0.0697 seconds