• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 258
  • 61
  • 45
  • 40
  • 31
  • 16
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 601
  • 120
  • 87
  • 52
  • 51
  • 51
  • 43
  • 42
  • 41
  • 38
  • 36
  • 36
  • 35
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Estimation of Instantaneous Speed for Rotating Systems: New Processing Techniques

Vemuri, Achyut 12 September 2016 (has links)
No description available.
152

Investigation of Various Novel Air-Breathing Propulsion Systems

Wilhite, Jarred M. January 2016 (has links)
No description available.
153

A study of a counter-rotating, intermeshing extruder as a polycondensation reactor

Crowe, Edward R. January 1992 (has links)
No description available.
154

Ohmic heating of biomaterials: peeling and effects of rotating electric field

Wongsa-Ngasri, Pisit 09 March 2004 (has links)
No description available.
155

Observed Flow Characteristics of Rotating Stall Inception and its Prevention Using Discrete Tip Injection in the NASA Stage 35 Axial Compressor with New Analysis Methods

Johnson, Benjamin P. 05 September 2008 (has links)
No description available.
156

Development of a Single-shot Lifetime PSP Measurement Technique for Rotating Surfaces

Kumar, Pradeep 02 November 2010 (has links)
No description available.
157

Inter-Bar Currents In Rotating Stator Induction Machines

Czarnuch, Stephen 12 1900 (has links)
This work pioneers the experimental acquisition of data relating to the heating effects of inter-bar currents and the frequency components of the main field rotating flux. Previous research in the field of inter-bar currents is reliant on theory and mathematical modeling. Yet, with the growing need for increasing machine efficiency; experimental application of conceptualized theoretical models of machine losses is paramount. Focusing specifically on inter-bar currents in a rotating stator induction machine revealed a correlation between the heat generated in the iron core and the presence of inter-bar currents. Using temperature sensing instrumentation, experimental data was gathered to determine the inter-bar current distribution along the length of the rotor bars during acceleration. Additionally, custom current transducers were implemented to directly measure the main field rotating flux. The results present a solid foundation for direct and indirect measurement of inter-bar currents. / Thesis / Master of Applied Science (MASc)
158

Evaluation of a Novel Aero-Engine Nose Cone Anti-Icing System Using a Rotating Heat Pipe

Gilchrist, Scott 02 1900 (has links)
Preventing ice accumulation on aircraft surfaces is important to maintain safe operation during flight. Ice accumulation on aero-engine nose cones is detrimental as large pieces may break off and be ingested into the engine damaging the compressor blades. Currently, hot bleed air is taken from the compressor and blown over the inside and outside surfaces of the nose cone to prevent ice formation on the surface. Although effective, this technique reduces the efficiency of the aero-engine. This investigation evaluates the performance of a novel anti-icing system that uses a rotating heat pipe to transfer heat from the engine to the nose cone. Rotating heat pipes are effective two-phase heat transfer devices capable of transporting large amounts of heat over small temperature differences and cross-sectional areas. In this system, waste heat that is generated in the engine would be transferred to the rotating heat pipe at an evaporator and then transferred into the critical areas of the nose cone at a condenser preventing ice accumulation on the outside surface. In this investigation, the heat is transferred into the heat pipe from a fluid heated by the engine that would pass through a small annular gap between the rotating heat pipe and a stationary wall. The heat transfer for this configuration and the effect of passive heat transfer augmentation on the outside of the rotating heat pipe in the jacket was investigated experimentally for a range of Taylor numbers of 10^6 < Ta < 5x10^7 and for axial Reynolds numbers of 900 < Re_x < 2100, characteristic of this configuration when engine lubricant was used as the working fluid. It was found that by using an array of three-dimensional cubical protrusions, the heat transfer in the evaporator could be increased by 35% to 100%. This result was better than that found using two-dimensional rib roughness. It was also found that the evaporator performance was a limiting factor in the heat transfer performance of the system under most conditions, so further optimization of the evaporator is important. In the proposed condenser design, the condenser section of the rotating heat pipe would be encased in a lightweight, high conductivity polycrystalline graphite or similar composite material and the end of the heat pipe would be in direct contact with the nose cone. It was found that the end-wall of the heat pipe was not a source of high heat transfer, however it provided an effective means for heating the tip of the nose cone. The effect of using heating channels on the inside of the nose cone was also considered. Here, the condensate from the rotating heat pipe was driven through small radially spaced channels on the inside surface of the nose cone. The heating channels were found to be ineffective due to the small contact area that could be made with the nose cone. This was a result of the limited condensate flow that occurs in rotating heat pipes. The heat transfer through the proposed system was 700W to 1100W using water and 400W to 800W using ethanol in the heat pipe. It was found that 50% to 75% of the arclength of the nose cone could be maintained above 0°C using water in the heat pipe at an ambient temperature of -30°C and an airplane speed of 300 km/h. This arclength decreased to approximately 25% when ethanol was used as the working fluid. An increase in airplane speed reduced this arclength maintained above 0°C significantly. / Thesis / Master of Applied Science (MASc)
159

Baroclinic vacillation in a rotating annulus.

Piette, Gérard January 1971 (has links)
No description available.
160

Instabilities in a critical flow problem.

Porter, David Larsen January 1977 (has links)
Thesis. 1977. M.S.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Microfiche copy available in Archives and Science. / Vita. / Bibliography : leaf 67. / M.S.

Page generated in 0.0491 seconds