1 |
Runtime cross-layer optimization for visual-inertial localization on resource-constrained devicesKelly, Jessica Ivy January 2021 (has links)
An increasing number of complex applications are being executed on resource constrained devices, such as drones and rovers. Such systems often operate in dynamic and unknown environments, and consequently have dynamic performance requirements based on their surroundings. These systems must consider the trade-off between application and platform performance in order to operate within resource means. This thesis proposes a runtime resource management system for a monolithic localization application. The proposed strategy uses gradient boosting regressors to predict localization accuracy and power consumption at runtime for a set of configurable application and platform parameters. A model-based controller selects parameters at runtime to optimize localization accuracy subject to a power constraint. The testbed used for experiments consists of maplab, a visual-inertial localization and mapping framework, executed monolithically on the Nvdia Jetson AGX platform. The results highlight the importance of incorporating dynamic parameters when identifying predictive models for localization systems. The proposed system is able to track a power reference while maintaining reasonable localization accuracy at runtime, for both platform and application parameters. The results demonstrate that runtime control can achieve better performance than alternative solutions which rely on offline profiling of the configuration space. / Ett ökande antal komplexa program körs på resursbegränsade enheter, till exempel drönare och rover. Sådana system fungerar ofta i dynamiska och okända miljöer och har därför dynamiska prestandakrav som är baserade på deras omgivningar. I dessa system måste hänsyn tas till skillnaden mellan applikations- och plattformsprestanda för att kunna fungera med hjälp av resurser. I den här tesen föreslås ett resurshanteringssystem för körning av ett monolitiskt lokaliseringsprogram. Den föreslagna strategin använder övertoningsförstärkare för att förutsäga lokaliseringens exakthet och energiförbrukning vid körning för en uppsättning konfigurerbara program- och plattformsparametrar. En modellbaserad styrenhet väljer parametrar under körning för att optimera lokaliseringsnoggrannheten under förutsättning att det finns en energibegränsning. Den testbädd som används för experiment består av maplab, en ram för visuell tröghetslokalisering och kartläggning, som utförts monolitiskt på Nvdia Jetson AGX-plattformen. Resultaten belyser vikten av att införliva dynamiska parametrar när man identifierar förutsägbara modeller för lokaliseringssystem. Det föreslagna systemet kan spåra en energireferens samtidigt som man bibehåller en rimlig lokaliseringsnoggrannhet vid körning, för både plattformsparametrar och programparametrar. Resultaten visar att körningskontroll kan ge bättre prestanda än alternativa lösningar som är beroende av offlineprofilering av konfigurationsutrymmet.
|
2 |
Towards Adaptive Image Resolution for Visual SLAM on Resource-constrained Devices / Mot anpassning av bildupplösning för bildbaserad SLAM på enheter med begränsade resurserBlenneros, Herman January 2023 (has links)
Today, a large number of devices with small form factors and limited resources are being integrated with processes to perform complex tasks such as localization and mapping. One example of this are headsets used for Extended Reality. These devices are expected to perform under changing conditions in the environment and in the available resources, which require sophisticated control policies. In this thesis project, we start investigating the feasibility of online control of the image resolution of the camera sensor used for Visual Localization, for the purpose of minimizing the requirements of the process without decreasing the performance. Specifically, we perform extensive experiments on two Visual Simultaneous Localization and Mapping systems and a Visual Odometry system on two platforms with limited resources to see how the performance metrics are affected by the image resolution. Moreover, we model the localization error of ORB-SLAM3 with the use of feature matching statistics and the camera velocity. Our experimental results show that savings in terms of the execution time of Visual Localization by adapting the image resolution is possible in some situations. But we did not find significant potential savings in terms of the power consumption of the devices. We also found that the feature matching statistics improve predictions about the localization error of ORB-SLAM3 in several situations compared to only using the camera velocity. But the results are limited to a set of known scenarios, which highlights the difficulty of the modelling problem. Nevertheless, this thesis provides valuable insights into how sensor parameters affect the performance of Visual Localization, and how the localization error relates to tracking statistics inside the localization process. / Idag utrustas fler resursbegränsade enheter med förmågan att utföra komplicerade uppgifter, såsom lokalisering och kartläggning i realtid. Efterfrågan av att små enheter med begränsade resurser ska kunna lokalisera i realtid styrs bland annat av intresset för virtuella upplevelser, till exempel med hjälp av smarta glasögon. Men för att leva upp till förväntningarna krävs en nogrann avvägning mellan prestanda och resurseffektivitet, något som försvåras av en föränderlig omgivning. I det här examensarbetet så utreds möjligheten att påverka prestandan och resurskraven av bildbaserad lokalisering i realtid genom att anpassa bildupplösningen av kameran. Att minska resurskraven för denna processen gör att det blir enklare att uppnå acceptabel prestanda på resursbegränsade enheter och underlättar avlastning av delar av processen med hjälp av molntjänster. I samband med utredningen så modelleras felet av ORB-SLAM3 med hjälp av interna mätetal som karakteriserar lokaliseringsprocessen för att i framtiden kunna informera beslut om bildupplösningen. Resultaten tyder på att det i vissa fall är möjligt att minska resurskraven av bildbaserad lokalisering utan att försämra prestandan. Vad gäller modelleringen av felet, så tyder resultaten på att de valda mätetalen inte är nog för att förutspå felet med någon vidare säkerhet. Men genom att kombinera mätetalen med kamerans hastighet så kan man till viss mån förutspå felet av ORB-SLAM3 i ett urval av kända scenarion. Däremot visar sig resultaten inte vara generaliserbara till nya scenarion som modellerna inte har tränats på, vilket understryker svårigheten av problemet. Genom detta arbetet har vi bidragit med värdefulla insikter som kan leda forskningen inom området vidare.
|
3 |
Runtime control for application failure prevention in resource-constrained devices / Körtidskontroll för att förhindra programfel i enheter med begränsade resurserAlbert Smet, Javier January 2022 (has links)
In the last decades, there has been a growing interest towards new use cases in the Internet of Things (IoT) domain, such as extended reality glasses, unmanned aerial vehicles (UAVs), and autonomous driving. The technological advancement observed in such scenarios has also been enabled by the increasing capabilities of small form factor devices. Although such devices allow to achieve remarkable computing performance with relatively low energy consumption, these are often used in contexts in which the trade-offs between power consumption and application performance play a key role (e.g., battery powered systems). Furthermore, if such trade-offs are not carefully set, the performance degradation can lead to system failure. The work proposed in this thesis aims at investigating this type of problems, and to propose a runtime model and controller pair based on the joint optimization of the platform and application parameters to reduce the likelihood of system failure. The proposed architecture is evaluated in a UAV emulated environment, in which the used platform embeds hardware features comparable to the ones of a drone, while the localization and mapping application executed on such device makes use of real-world visual-inertial datasets. The proposed runtime model-controller solution relies on the monitoring of the platform CPU peaks for identifying application failure. It has also been empirically demonstrated that the model-controller can substantially decrease the number of failures and, in specific scenarios, improve localization accuracy and power consumption even compared to the optimal static parameter configurations. Moreover, the solution has been proven to be simple and generalizable in scenarios characterized by different levels of concurrency, and in the datasets tested. / Under de senaste decennierna har det funnits ett växande intresse för nya användningsfall som Extended Reality-glasögon, obemannade flygfarkoster (UAV) och autonom körning. De tekniska framstegen som observerats i sådana scenarier har också möjliggjorts av den ökande kapaciteten hos små formfaktorenheter. Även om sådana enheter gör det möjligt att uppnå anmärkningsvärd datorprestanda med relativt låg energiförbrukning, används dessa ofta i sammanhang där kompromisserna mellan strömförbrukning och applikationsprestanda spelar en nyckelroll (t.ex. batteridrivna system). Dessutom, om sådana avvägningar inte är noggrant inställda, kan prestandaförsämringen leda till systemfel. Arbetet som föreslås i denna avhandling syftar till att undersöka denna typ av problem, och att föreslå en körtid modellstyrenhet baserad på gemensam optimering av plattformen och applikationsparametrar för att minska systemfel. Den föreslagna arkitekturen utvärderas i en UAV-emulerad miljö, där den använda plattformen har hårdvarufunktioner som är motsvarar en drönare, medan lokaliserings- och kartläggningsapplikationen som körs på en sådan enhet använder verkliga visuella tröghetsdatauppsättningar. Den föreslagna runtime-modellstyrningslösningen förlitar sig på övervakning av plattformens CPU-toppar för att identifiera programfel. Det har också visat sig empiriskt att modellstyrenheten avsevärt kan minska antalet fel och, i specifika scenarier, förbättra lokaliseringsnoggrannheten och strömförbrukningen även jämfört med de optimala statiska parameterkonfigurationerna. Dessutom har lösningen visat sig vara enkel och generaliserbar i scenarier som kännetecknas av olika nivåer av samtidighet och i de testade datamängderna.
|
4 |
Contrôle des applications fondé sur la qualité de service pour les plate-formes logicielles dématérialisées (Cloud) / Control of applications based on quality of service in Cloud software platformsLi, Ge 21 July 2015 (has links)
Le « Cloud computing » est un nouveau modèle de systèmes de calcul. L’infrastructure, les applications et les données sont déplacées de machines localisées sur des systèmes dématérialisés accédés sous forme de service via Internet. Le modèle « coût à l’utilisation » permet des économies de coût en modifiant la configuration à l’exécution (élasticité). L’objectif de cette thèse est de contribuer à la gestion de la Qualité de Service (QdS) des applications s’exécutant dans le Cloud. Les services Cloud prétendent fournir une flexibilité importante dans l’attribution des ressources de calcul tenant compte des variations perçues, telles qu’une fluctuation de la charge. Les capacités de variation doivent être précisément exprimées dans un contrat (le Service Level Agreement, SLA) lorsque l’application est hébergée par un fournisseur de Plateform as a Service (PaaS). Dans cette thèse, nous proposons et nous décrivons formellement le langage de description de SLA PSLA. PSLA est fondé sur WS-Agreement qui est lui-même un langage extensible de description de SLA. Des négociations préalables à la signature du SLA sont indispensables, pendant lesquelles le fournisseur de PaaS doit évaluer la faisabilité des termes du contrat. Cette évaluation, par exemple le temps de réponse, le débit maximal de requêtes servies, etc, est fondée sur une analyse du comportement de l’application déployée dans l’infrastructure cloud. Une analyse du comportement de l’application est donc nécessaire et habituellement assurée par des tests (benchmarks). Ces tests sont relativement coûteux et une étude précise de faisabilité demande en général de nombreux tests. Dans cette thèse, nous proposons une méthode d’étude de faisabilité concernant les critères de performance, à partir d’une proposition de SLA exprimée en PSLA. Cette méthode est un compromis entre la précision d’une étude exhaustive de faisabilité et les coûts de tests. Les résultats de cette étude constituent le modèle initial de la correspondance charge entrante-allocation de ressources utilisée à l’exécution. Le contrôle à l’exécution (runtime control) d’une application gère l’allocation de ressources en fonction des besoins, s’appuyant en particulier sur les capacités de passage à l’échelle (scalability) des infrastructures de cloud. Nous proposons RCSREPRO (Runtime Control method based on Schedule, REactive and PROactive methods), une méthode de contrôle à l’exécution fondée sur la planification et des contrôles réactifs et prédictifs. Les besoins d’adaptation à l’exécution sont essentiellement dus à une variation de la charge soumise à l’application, variations difficiles à estimer avant exécution et seulement grossièrement décrites dans le SLA. Il est donc nécessaire de reporter à l’exécution les décisions d’adaptation et d’y évaluer les possibles variations de charge. Comme les actions de modification des ressources attribuées peuvent prendre plusieurs minutes, RCSREPRO réalise un contrôle prédictif fondée sur l’analyse de charge et la correspondance indicateurs de performance-ressources attribuées, initialement définie via des tests. Cette correspondance est améliorée en permanence à l’exécution. En résumé, les contributions de cette thèse sont la proposition de langage PSLA pour décrire les SLA ; une proposition de méthode pour l’étude de faisabilité d’un SLA ; une proposition de méthode (RCSREPRO) de contrôle à l’exécution de l’application pour garantir le SLA. Les travaux de cette thèse s’inscrivent dans le contexte du projet FSN OpenCloudware (www.opencloudware.org) et ont été financés en partie par celui-ci. / Cloud computing is a new computing model. Infrastructure, application and data are moved from local machines to internet and provided as services. Cloud users, such as application owners, can greatly save budgets from the elasticity feature, which refers to the “pay as you go” and on-demand characteristics, of cloud service. The goal of this thesis is to manage the Quality of Service (QoS) for applications running in cloud environments Cloud services provide application owners with great flexibility to assign “suitable” amount of resources according to the changing needs, for example caused by fluctuating request rate. “Suitable” or not needs to be clearly documented in Service Level Agreements (SLA) if this resource demanding task is hosted in a third party, such as a Platform as a Service (PaaS) provider. In this thesis, we propose and formally describe PSLA, which is a SLA description language for PaaS. PSLA is based on WS-Agreement, which is extendable and widely accepted as a SLA description language. Before signing the SLA contract, negotiations are unavoidable. During negotiations, the PaaS provider needs to evaluate if the SLA drafts are feasible or not. These evaluations are based on the analysis of the behavior of the application deployed in the cloud infrastructure, for instance throughput of served requests, response time, etc. Therefore, application dependent analysis, such as benchmark, is needed. Benchmarks are relatively costly and precise feasibility study usually imply large amount of benchmarks. In this thesis, we propose a benchmark based SLA feasibility study method to evaluate whether or not a SLA expressed in PSLA, including QoS targets, resource constraints, cost constraints and workload constraints can be achieved. This method makes tradeoff between the accuracy of a SLA feasibility study and benchmark costs. The intermediate of this benchmark based feasibility study process will be used as the workload-resource mapping model of our runtime control method. When application is running in a cloud infrastructure, the scalability feature of cloud infrastructures allows us to allocate and release resources according to changing needs. These resource provisioning activities are named runtime control. We propose the Runtime Control method based onSchedule, REactive and PROactive methods (RCSREPRO). Changing needs are mainly caused by the fluctuating workload for majority of the applications running in the cloud. The detailed workload information, for example the request arrival rates at scheduled points in time, is difficult to be known before running the application. Moreover, workload information listed in PSLA is too rough to give a fitted resource provisioning schedule before runtime. Therefore, runtime control decisions are needed to be performed in real time. Since resource provisioning actions usually require several minutes, RCSREPRO performs a proactive runtime control which means that it predicts future needs and assign resources in advance to have them ready when they are needed. Hence, prediction of the workload and workload-resource mapping are two problems involved in proactive runtime control. The workload-resource mapping model, which is initially derived from benchmarks in SLA feasibility study is continuously improved in a feedback way at runtime, increasing the accuracy of the control.To sum up, we contribute with three aspects to the QoS management of application running in the cloud: creation of PSLA, a PaaS level SLA description language; proposal of a benchmark based SLA feasibility study method; proposal of a runtime control method, RCSREPRO, to ensure the SLA when the application is running. The work described in this thesis is motivated and funded by the FSN OpenCloudware project (www.opencloudware.org).
|
5 |
Modelling and Run-Time Control of Localization System for Resource-Constrained Devices / Modellering och Realtidsreglering av Lokaliseringssystem på Enheter med Begränsade ResurserMosskull, Albin January 2022 (has links)
As resource-constrained autonomous vehicles are used for more and more applications, their ability to achieve the lowest possible localization error without expending more power than needed is crucial. Despite this, the parameter settings of the localization systems, both for the platform and the application, are often set arbitrarily. In this thesis, we propose a model-based controller that adapts the parameters of the localization system during run-time by observing conditions in the environment. The test-bed used for experiments consists of maplab, a visual-inertial localization framework, that we execute on the Nvdia Jetson AGX platform. The results show that the linear velocity is the single most important environmental attribute to base the decision of when to update the parameters upon. We also found that while it was not possible to find a direct connection between certain parameters and environmental conditions, a connection could be found between sets of configuration parameters and conditions. Based on these conclusions, we compare model-based controller setups based on three different models: Finite Impulse Response (FIR), AutoRegressive eXogenous input (ARX) and Multi-Layer Perceptron (MLP). The FIR-based controller performed the best. This FIR-based controller is able to select configurations at the appropriate times to keep the error lower than it would be to randomly guess which set of configuration parameters is best. The proposed solution requires offline profiling before it can be implemented on new localization systems, but it can help to reduce the error and power consumption and thus enable more uses of resource-constrained devices. / Användningen av autonoma fordon med begränsade resurser ökar allt mer, vilket i sin tur ökar vikten av att dessa kan lokalisera med lägsta möjliga fel utan att förbruka mer effekt. Trots detta bestäms parametrarna för både hårdvara och i algoritmerna ofta godtyckligt för dessa lokaliseringssystem. I detta examensarbete presenterar vi en lösning till detta, i form av en modellbaserad regulator som anpassar parametrarna baserat på vad den detekterar i omgivningen. Vår testuppställning består av maplab, ett lokaliseringsramverk, som vi exekverar på Nvida Jetson AGX plattformen. Resultaten visar att den linjära hastigheten är den viktigaste miljövariabeln att detektera och använda för att anpassa parametrarna i lokaliseringssystemet. Resultaten visar även att det går att hitta kopplingar mellan konfigurationer och miljövariabler, även om det inte går att hitta mellan specifika konfigurationsparameterar och miljövariabler. Den regulator som presterar bäst visar sig vara en som är baserad på en Finite Impulse Response modell, med en optimeringshorisont på 5 sekunder. Denna presterar bättre än både AutoRegressive eXogenous input baserad regulator och en Multi-Layer Perceptron baserad regulator. Finite Impulse Response regulatorn åstadkommer ett fel som är lägre än slumpmässig gissning, på data den inte sett förut. Lösningen som uppvisas i detta projekt kräver optimering offline för att fungera, men om det utförs kan den reducera både lokaliseringsfelet och effektförbrukningen och genom det skapa nya användningsområden för resursbegränsade enheter.
|
Page generated in 0.0707 seconds