• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS ATRAVÉS DO ALGORITMO GROWING NEURAL GAS E DA FUNÇÃO K DE RIPLEY / DETECTION OF MASSES IN MAMOGRAPHY THROUGH ALGORITMA NEURAL GAS AND GROWING ROLE OF K RIPLEY

Martins, Leonardo de Oliveira 07 December 2007 (has links)
Made available in DSpace on 2016-08-17T14:53:26Z (GMT). No. of bitstreams: 1 Leonardo Martins.pdf: 1400853 bytes, checksum: 3b6aa06e1c4b580a53150460124fdeaa (MD5) Previous issue date: 2007-12-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Breast cancer is a serious public health problem in several countries of the world. Computer-Aided Detection/Diagnosis systems (CAD/CADx) have been used with relative success in aid to health care professionals. The goal of such systems is not to replace the professional, but join forces in order to early detect the different types of cancer. The main contribution of this work is to present a methodology for detecting masses in digitized mammograms using the algorithm Growing Neural Gas for the segmentation of the image and Ripley’s K function to describe the texture of segmented objects. The classification of these objects is accomplished through a Support Vector Machine (SVM), which separates them into two groups: masses and non-masses. The methodology obtained 89,30% of accuracy and a rate of 0,93 false-positive per image. / O câncer de mama apresenta-se como um grave problema de saúde pública em vários países do mundo. Sistemas de Detecção e Diagnóstico baseados em computador (CAD/CADx) vêm sendo usados com relativo sucesso no auxílio aos profissionais de saúde. O objetivo de tais sistemas não é substituir o profissional, mas unir forças com o objetivo de detectar precocemente os diferentes tipos de câncer. A principal contribuição deste trabalho é apresentar uma metodologia para detecção de massas em imagens mamográficas digitais, utilizando para tanto o algoritmo Growing Neural Gas para a segmentação da imagem e a função K de Ripley para descrever a textura dos objetos segmentados. A classificação desses objetos é feita através de uma Máquina de Vetor de Suporte (Support Vector Machine - SVM), a qual separa os mesmos em dois grupos: massa e não-massa. A metodologia obteve 89,30% de acerto e uma taxa de 0,93 falso-positivos por imagem.
2

DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO REDES NEURAIS CELULARES, FUNÇÕES GEOESTATÍSTICAS E MÁQUINAS DE VETORES DE SUPORTE / DETECTION OF MASSES IN MAMMOGRAPHY IMAGES USING CELLULAR NEURAL NETWORKS, STATISCAL FUNCTIONS VECTOR MACHINES AND SUPPORT

Sampaio, Wener Borges de 31 August 2009 (has links)
Made available in DSpace on 2016-08-17T14:53:04Z (GMT). No. of bitstreams: 1 Werner Borges de Sampaio.pdf: 2991418 bytes, checksum: 1c3fd03c2e6ffea37ed00740d75d2ffd (MD5) Previous issue date: 2009-08-31 / Breast cancer presents high occurrence frequency among the world population and its psychological effects alter the perception of the patient s sexuality and the own personal image. Mammography is an x-ray of the mamma that allows the precocious detection of cancer, since it is capable to showing lesions in their initial stages, typically very small lesions in the order of millimeters. The processing of mammographic images has been contributing to the detection and the diagnosis of mammary nodules, being an important tool, because it reduces the degree of uncertainty of the diagnosis, providing a supplementary source of information to the specialist. This work presents a computational methodology that aids the specialist in the detection of breast masses. The first step of the methodology aims at improvement the mammographic image, which consists of removal of unwanted objects, reduction of noise and enhancement of the breast internal structures. Then, Cellular Neural Networks are used to segment areas suspected of containing masses. These regions have their shapes analyzed by geometry descriptors (eccentricity, circularity, compactness, circular disproportion and circular density) and their textures are analyzed using geostatistical functions (Ripley's K function, Moran's and Geary's indices). Support Vector Machine were trained and used to classify the candidate regions in one of the classes, masses or no-mass, with sensibility of 80.00%, specificity of 85.68%, acuracy of 84.62%, a rate of 0.84 false positive for image and 0.20 false negative for image and an area under the curve ROC of 0.827. / Câncer de mama apresenta alta freqüência de ocorrência entre a população mundial e seus efeitos psicológicos alteram a percepção da sexualidade do paciente e a própria imagem pessoal. A mamografia é uma radiografia da mama que permite a descoberta precoce de câncer, sendo capaz a mostrar lesões nas fases iniciais, tipicamente lesões muito pequenas na ordem de milímetros. O processamento de imagens mamográficas tem contribuído para a descoberta e o diagnóstico de nódulos mamários, sendo uma importante ferramenta, pois reduz o grau de incerteza do diagnóstico, provendo uma fonte adicional de informação ao especialista. Este trabalho apresenta uma metodologia computacional que ajuda o especialista na descoberta de massas mamárias. O primeiro passo da metodologia visa à melhoria da imagem da mamografia que consiste em remoção de objetos externos à mama, redução de ruídos e realce das estruturas internas da mama. Então, Redes Neurais Celulares são usadas para segmentar áreas suspeitadas de conter massas. Estas regiões têm as suas formas analisadas por descritores de geometria (excentricidade, circularidade, densidade, desproporção circular e densidade circular) e as suas texturas analisadas por funções geoestatísticas (função de K de Ripley, e os índices de Moran e Geary). Máquinas de Vetores de Suporte são treinadas para classificar as regiões candidatas em um das classes, massas ou não-massa, com sensibilidade de 80,00%, especificidade de 85,68%, acurácia de 84,62%, uma taxa de 0,84 falsos positivos por imagem e 0,20 falsos negativos por imagem e uma área sob da curva ROC de 0,870.

Page generated in 0.0746 seconds