Spelling suggestions: "subject:"detecção auxiliado por computador"" "subject:"detecção auxiliadora por computador""
1 |
DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS ATRAVÉS DO ALGORITMO GROWING NEURAL GAS E DA FUNÇÃO K DE RIPLEY / DETECTION OF MASSES IN MAMOGRAPHY THROUGH ALGORITMA NEURAL GAS AND GROWING ROLE OF K RIPLEYMartins, Leonardo de Oliveira 07 December 2007 (has links)
Made available in DSpace on 2016-08-17T14:53:26Z (GMT). No. of bitstreams: 1
Leonardo Martins.pdf: 1400853 bytes, checksum: 3b6aa06e1c4b580a53150460124fdeaa (MD5)
Previous issue date: 2007-12-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Breast cancer is a serious public health problem in several countries of the
world. Computer-Aided Detection/Diagnosis systems (CAD/CADx) have
been used with relative success in aid to health care professionals. The
goal of such systems is not to replace the professional, but join forces in
order to early detect the different types of cancer. The main contribution of
this work is to present a methodology for detecting masses in digitized
mammograms using the algorithm Growing Neural Gas for the
segmentation of the image and Ripley’s K function to describe the texture
of segmented objects. The classification of these objects is accomplished
through a Support Vector Machine (SVM), which separates them into two
groups: masses and non-masses. The methodology obtained 89,30% of
accuracy and a rate of 0,93 false-positive per image. / O câncer de mama apresenta-se como um grave problema de saúde
pública em vários países do mundo. Sistemas de Detecção e Diagnóstico
baseados em computador (CAD/CADx) vêm sendo usados com relativo
sucesso no auxílio aos profissionais de saúde. O objetivo de tais sistemas
não é substituir o profissional, mas unir forças com o objetivo de detectar
precocemente os diferentes tipos de câncer. A principal contribuição deste
trabalho é apresentar uma metodologia para detecção de massas em
imagens mamográficas digitais, utilizando para tanto o algoritmo Growing
Neural Gas para a segmentação da imagem e a função K de Ripley para
descrever a textura dos objetos segmentados. A classificação desses
objetos é feita através de uma Máquina de Vetor de Suporte (Support
Vector Machine - SVM), a qual separa os mesmos em dois grupos: massa
e não-massa. A metodologia obteve 89,30% de acerto e uma taxa de 0,93
falso-positivos por imagem.
|
2 |
DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO ÍNDICE DE DIVERSIDADE DE SIMPSON E MÁQUINA DE VETORES DE SUPORTE. / Mass detection in mammography images using SIMPSON's diversity index and vectoring machine support.NUNES, André Pereira 20 February 2009 (has links)
Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-08-21T14:59:23Z
No. of bitstreams: 1
Andre Pereira.pdf: 3105574 bytes, checksum: 06e2fe68d48179a3c62a46e447b82513 (MD5) / Made available in DSpace on 2017-08-21T14:59:23Z (GMT). No. of bitstreams: 1
Andre Pereira.pdf: 3105574 bytes, checksum: 06e2fe68d48179a3c62a46e447b82513 (MD5)
Previous issue date: 2009-02-20 / Breast cancer is one of the major causes of mortality among women throughout
the world. Presently, the analysis of breast radiography is the most used
method to early detection of this kind of cancer. It enables the identification of
anomalies at their initial stage, which is a fundamental factor for success in the
treatment. The sensitivity of this kind of exam, although, depends on several
factors, such as the size and the location of the abnormalities, density of the
breast tissue, quality of the technical resources and radiologist's ability. This
work presents a methodology that uses the K-Means clustering algorithm and
the Template Matching technique for segmentation of suspicious regions. Next,
geometry and texture features are extracted from each of these regions, being
the texture described by the Simpson's Diversity Index, a statistic used in
Ecology to measure the biodiversity of an ecosystem. Finally, this information is
submitted to a Support Vector Machine so that the suspicious regions are
classified into masses and non-masses. The methodology was tested with 650
mammographic images from the DDSM database, achieving 83.94% of
accuracy, 83.24% of sensibility and 84.14% of specificity in average. / O câncer de mama é uma das maiores causas de mortalidade entre as
mulheres no mundo todo. Atualmente, a análise da radiografia da mama é o
recurso mais utilizado na detecção precoce desse tipo de câncer, pois
possibilita a identificação de anomalias em sua fase inicial, fator fundamental
para o sucesso do tratamento. A sensibilidade desse tipo de exame, no
entanto, depende de diversos fatores, tais como tamanho e localização das
anomalias, densidade do tecido mamário, qualidade dos recursos técnicos e
habilidade do radiologista. Este trabalho apresenta uma metodologia para
detecção de massas em imagens digitais de mamografias que poderá auxiliar o
especialista em sua análise. O método proposto utiliza o algoritmo de
agrupamento K-Means e a técnica de Template Matching para segmentar as
regiões suspeitas de conterem massas. Em seguida, medidas de geometria e
textura são extraídas de cada uma dessas regiões, sendo a textura descrita
através do Índice de Diversidade de Simpson, uma estatística usada na
Ecologia para mensurar a biodiversidade de um ecossistema. Finalmente,
essas informações são submetidas a uma Máquina de Vetores de Suporte para
que as regiões suspeitas sejam classificadas em massas ou não massas. A
metodologia foi testada com 650 imagens mamográficas obtidas da base de
dados DDSM, atingindo 83,94% de acurácia, 83,24% de sensibilidade, e
84,14% de especificidade em média.
|
3 |
SEGMENTAÇÃO AUTOMÁTICA DE NÓDULOS PULMONARES COM GROWING NEURAL GAS E MÁQUINA DE VETORES DE SUPORTE / AUTOMATIC SEGMENTATION OF PULMONARY NODULES WITH GROWING NEURAL GAS VECTOR MACHINE AND SUPPORTNetto, Stelmo Magalhães Barros 10 February 2010 (has links)
Made available in DSpace on 2016-08-17T14:53:07Z (GMT). No. of bitstreams: 1
Stelmo Magalhaes Barros Netto.pdf: 2768924 bytes, checksum: bf6f24780a03adb4f2940b818c95f293 (MD5)
Previous issue date: 2010-02-10 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Lung cancer is still one of the most frequent types throughout the world. Its diagnosis is very difficult because its initial morphological characteristics are not well defined, and also because of its location in relation to the lung. It is usually detected late, fact that causes a large lethality rate. Facing these difficulties, many researches are done, concerning both detection and diagnosis. The objective of this work is to propose a methodology for computer-aided automatic lung nodule detection. The return of the development of such methodology is that its application will aid the doctor in the simultaneous detection of several nodules present in computerized tomography images. The methodology developed for automatic detection of lung nodules involves the use of a method of competitive learning, called Growing Neural Gas (GNG). The methodology still consists in the reduction of the volume of interest, by the use of techniques largely used in thorax extraction, lung extraction and reconstruction. The next stage is the application of the GNG in the resulting volume of interest, that together with the separation of the nodules from the various structures present in the lung form the segmentation stage, and, finally, through texture and geometry measurements, the classification as either nodule or non-nodule is performed. The methodology guarantees that nodules of reasonable size are found with sensibility of 86%, specificity of 91%, what results in accuracy of 91%, in average, for ten training and test experiments, in a sample of 48 nodules occurring in 29 exams. The false-positive per exam rate was of 0.138, for the 29 analyzed exams. / O câncer de pulmão ainda é um dos mais incidentes em todo mundo. Seu diagnóstico é de difícil realização, devido as suas características morfológicas iniciais não estarem bem definidas e também por causa da sua localização em relação ao pulmão. É geralmente detectado tardiamente, que tem como conseqüência uma alta taxa de letalidade. Diante destas dificuldades muitas pesquisas são realizadas, tanto em relação a sua detecção, quanto a seu diagnóstico. O objetivo deste trabalho é propor uma metodologia de detecção automática do nódulo pulmonar com o auxílio do computador. O ganho com o desenvolvimento desta metodologia, é que sua implementação auxiliará ao médico na detecção simultânea dos diversos nódulos presentes nas imagens de tomografia computadorizada. A metodologia de detecção de nódulos pulmonares desenvolvida envolve a utilização de um método da aprendizagem competitiva, chamado de Growing Neural Gas (GNG). A metodologia ainda consiste na redução do volume de interesse, através de técnicas amplamente utilizadas na extração do tórax, extração do pulmão e reconstrução. A etapa seguinte é a aplicação do GNG no volume de interesse resultante, que em conjunto com a separação do nódulo das diversas estruturas presentes formam a etapa de segmentação, e por fim, é realizada a classificação das estruturas em nódulo e não-nódulo, por meio das medidas de geometria e textura. A metodologia garante que nódulos com tamanho razoável sejam encontrados com sensibilidade de 86%, especificidade de 91%, que resulta em uma acurácia de 91%, em média, para dez experimentos de treino e teste, em uma amostra de 48 nódulos ocorridos em 29 exames. A taxa de falsos positivos por exame foi de 0,138, para os 29 exames analisados.
|
4 |
DETECÇÃO DE MASSAS EM IMAGENS MAMOGRÁFICAS USANDO REDES NEURAIS CELULARES, FUNÇÕES GEOESTATÍSTICAS E MÁQUINAS DE VETORES DE SUPORTE / DETECTION OF MASSES IN MAMMOGRAPHY IMAGES USING CELLULAR NEURAL NETWORKS, STATISCAL FUNCTIONS VECTOR MACHINES AND SUPPORTSampaio, Wener Borges de 31 August 2009 (has links)
Made available in DSpace on 2016-08-17T14:53:04Z (GMT). No. of bitstreams: 1
Werner Borges de Sampaio.pdf: 2991418 bytes, checksum: 1c3fd03c2e6ffea37ed00740d75d2ffd (MD5)
Previous issue date: 2009-08-31 / Breast cancer presents high occurrence frequency among the world population and its psychological effects alter the perception of the patient s sexuality and the own personal image. Mammography is an x-ray of the mamma that allows the precocious detection of cancer, since it is capable to showing lesions in their initial stages, typically very small lesions in the order of millimeters. The processing of mammographic images has been contributing to the detection and the diagnosis of mammary nodules, being an important tool, because it reduces the degree of uncertainty of the diagnosis, providing a supplementary source of information to the specialist. This work presents a computational methodology that aids the specialist in the detection of breast masses. The first step of the methodology aims at improvement the mammographic image, which consists of removal of unwanted objects, reduction of noise and enhancement of the breast internal structures. Then, Cellular Neural Networks are used to segment areas suspected of containing masses. These regions have their shapes analyzed by geometry descriptors (eccentricity, circularity, compactness, circular disproportion and circular density) and their textures are analyzed using geostatistical functions (Ripley's K function, Moran's and Geary's indices). Support Vector Machine were trained and used to classify the candidate regions in one of the classes, masses or no-mass, with sensibility of 80.00%, specificity of 85.68%, acuracy of 84.62%, a rate of 0.84 false positive for image and 0.20 false negative for image and an area under the curve ROC of 0.827. / Câncer de mama apresenta alta freqüência de ocorrência entre a população mundial e seus efeitos psicológicos alteram a percepção da sexualidade do paciente e a própria imagem pessoal. A mamografia é uma radiografia da mama que permite a descoberta precoce de câncer, sendo capaz a mostrar lesões nas fases iniciais, tipicamente lesões muito pequenas na ordem de milímetros. O processamento de imagens mamográficas tem contribuído para a descoberta e o diagnóstico de nódulos mamários, sendo uma importante ferramenta, pois reduz o grau de incerteza do diagnóstico, provendo uma fonte adicional de informação ao especialista. Este trabalho apresenta uma metodologia computacional que ajuda o especialista na descoberta de massas mamárias. O primeiro passo da metodologia visa à melhoria da imagem da mamografia que consiste em remoção de objetos externos à mama, redução de ruídos e realce das estruturas internas da mama. Então, Redes Neurais Celulares são usadas para segmentar áreas suspeitadas de conter massas. Estas regiões têm as suas formas analisadas por descritores de geometria (excentricidade, circularidade, densidade, desproporção circular e densidade circular) e as suas texturas analisadas por funções geoestatísticas (função de K de Ripley, e os índices de Moran e Geary). Máquinas de Vetores de Suporte são treinadas para classificar as regiões candidatas em um das classes, massas ou não-massa, com sensibilidade de 80,00%, especificidade de 85,68%, acurácia de 84,62%, uma taxa de 0,84 falsos positivos por imagem e 0,20 falsos negativos por imagem e uma área sob da curva ROC de 0,870.
|
Page generated in 0.0778 seconds