• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 25
  • 15
  • 14
  • 13
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Regulation of vascular development and homeostasis by platelet-derived Sphingosine 1-Phosphate / Régulation de l’homéostasie et du développement vasculaire par la Sphingosine 1-Phosphate

Gazit, Salomé 05 November 2015 (has links)
Résumé confidentiel / Confidential abstract
12

Sphingosine-1-Phosphate and Fingolimod (FTY720) Regulate ICl,swell In HL-1 Cardiac Myocytes via Intracellular Binding And Mitochondrial ROS Production

Desai, Pooja 01 January 2013 (has links)
Swelling-activated Cl− current (ICl,swell) is an outwardly-rectifying current that plays an important role in cardiac electrical activity, cellular volume regulation, apoptosis, and acts as a potential effector of mechanoelectrical feedback. Persistent activation of ICl,swell has been observed in models of cardiovascular disease. We previously suggested sphingosine-1-phosphate (S1P) activates volume-sensitive Cl- current (ICl,swell) by ROS-dependent signaling. S1P and its analog, FTY720 (fingolimod), primarily act via G-protein coupled receptors (S1PR; S1PR1-3 in heart), but several intracellular S1P ligands are known. We investigated how these agents regulate ICl,swell. ICl,swell was elicited by bath S1P (500 nM), FTY720 (S1PR1,3 agonist; 10 μM), and SEW2871 (S1PR1 agonist; 10 μM) and was fully inhibited by DCPIB, a specific blocker. These data suggested role of S1PR in activation of ICl,swell. Surprisingly, neither CAY10444 (S1PR3 antagonist; 10 μM) nor VPC23019 (S1PR1,3 antagonist; 13 μM) blocked FTY720-induced ICl,swell. Also, gallein a pan Gbeta-gamma inhibitor, failed to block the S1P-induced current. Moreover, 100 nM FTY720 applied via the pipette evoked a larger, faster activating current than 10 μM bath FTY720. Similarly, 500 nM S1P gave larger, faster activating ICl,swell when added to the pipette than when added in the bath. In contrast to FTY720, bath S1P-induced ICl,swell was blocked by CAY10444, but a 3-fold higher concentration failed to eliminate the response to pipette S1P, and VPC23019 failed to suppress bath and pipette S1P-induced currents. Taken together, inconsistencies in the responses to S1PR agents and the greater sensitivity to pipette than bath S1P and FTY720 support the notion that intracellular ligands rather than sarcolemmal S1PR activated ICl,swell. Next we tested if S1P and FTY720, like osmotic swelling, require both NADPH oxidase and mitochondrial ROS production to evoke ICl,swell. S1P- and FTY720-induced ICl,swell were blocked by rotenone but were insensitive to gp91ds-tat, suggesting only mitochondrial ROS production was needed. One possibility is that S1P and FTY720 elicit ICl,swell by binding to mitochondrial prohibitin-2, an S1P ligand whose knockdown augments mitochondrial ROS productions. These data suggest ICl,swell may be activated by S1P accumulation in ischemia-reperfusion and CHF. Understanding S1P-signaling that elicits ICl,swell may provide insight into electrophysiological mechanisms of cardiac pathology and help identify novel targets for therapy.
13

SPHINGOLIPID-INDUCED ACTIVATION OF THE VOLUME-SENSITIVE Cl− CURRENT IS MEDIATED BY MITOCHONDRIAL REACTIVE OXYGEN SPECIES

Raucci, Frank 18 October 2009 (has links)
Swelling-activated Cl− current (ICl,swell) is an outwardly-rectifying current that plays an important role in cardiac electrical activity, cellular volume regulation, apoptosis, and acts as a potential effector of mechanoelectrical feedback. Persistent activation of ICl,swell has been observed in a number of models of cardiovascular disease. Previously we showed that angiotensin II (Ang II), endothelin-1 (ET-1), endothelial growth factor receptor (EGFR), and reactive oxygen species (ROS) produced by NADPH oxidase (NOX) and mitochondria are involved in the activation of ICl,swell by both osmotic swelling and Beta1 integrin stretch. Sphingolipid metabolism is modulated in several cardiopathologies and because sphingolipids are bioactive lipids involved in signaling cascades that overlap significantly with these modulators of ICl,swell, we investigated the role of sphingolipids in the regulation of ICl,swell in cardiac ventricular myocytes. Under isoosmotic conditions that isolate anions currents, addition of exogenous, cell permeant C2-ceramide (C2-Cer) elicited an outwardly-rectifying Cl− current that reversed near the Cl− equilibrium potential (ECl) in both physiological and symmetrical Cl− gradients. This current was inhibited by the ICl,swell-specific blockers DCPIB. Dihydro-C2-ceramide (C2-H2Cer), the inactive analogue of C2-Cer, failed to elicit current. These data strongly suggest that the identity of C2-Cer-induced Cl− current is ICl,swell and indicate that sphingolipid signaling pathways may be involved. Bacterial sphingomyelinase (SMase), which converts endogenous sphingomyelin in the outer leaflet of the sarcolemmal membrane to native chain-length ceramides, elicited a DCPIB-sensitive Cl− current. SMase-induced current is also suppressed by tamoxifen, which under conditions that isolate anion currents is a specific inhibitor of ICl,swell. SMase-induced ICl,swell was abrogated by ebselen, a membrane permeant glutathione peroxidase mimetic that dismutates H2O2 to H2O. This suggests that ROS are required mediators of SMase-induced activation of ICl,swell. Both NOX and mitochondria are important sources of ROS in cardiomyocytes and both have been implicated in modulating ICl,swell. Blocking NOX with apocynin or the NOX fusion peptide inhibitor gp91ds-tat had no effect on SMase-induced current. However, pretreatment of cardiomyocytes with gp91ds-tat reduced the maximum current amplitude of SMaseinduced ICl,swell, indicating that NOX may play a time-dependent role in this mechanism. By contrast, the mitochondrial Complex I blocker rotenone, which suppresses extramitochondrial ROS release by Complex III, completely suppresses SMase-induced ICl,swell. Additionally, SMase-induced ICl,swell is partially inhibited by blockade of mitochondrial KATP (mitoKATP) channels with 5-hydroxy-decanoic acid (5-HD). MitoKATP channels have been implicated as modulators of mitochondrial ROS release. Thus these data suggest that mitochondrial ROS generation is required for SMaseinduced activation of ICl,swell. Ceramides are metabolized to form several sphingolipids, including sphingosine-1-phosphate (S1P). We tested whether ceramide metabolites are responsible for eliciting ICl,swell. Under isosmotic conditions that isolate anion currents, SMase-induced ICl,swell was abrogated by blockade of ceramidase, which converts ceramide to sphingosine, with Derythro-MAPP. SMase-induced ICl,swell also was suppressed by inhibition of sphingosine kinase with DL-threo-dihydrosphingosine. These data suggested that the ceramide metabolite S1P is likely to stimulate ICl,swell. As expected, exogenous S1P elicited an outwardly rectifying Cl− current that was fully inhibited by DCPIB. As seen with SMaseinduced ICl,swell, S1P-induced ICl,swell was fully inhibited by rotenone. In contrast to results with SMase, S1P-induced current was partially inhibited by blockade of NOX with apocynin. These data indicate that S1P is a necessary component of SMase-induced ICl,swell activation and that the action of exogenous S1P involves ROS from both mitochondria and NOX. Importantly, the fact that exogenous C2-ceramide also activates ICl,swell even though C2-ceramide may not metabolized to S1P in native cells. Thus, it seems likely that ceramides can elicit ICl,swell via S1P and also by a distinct pathway and that both pathways converge at mitochondrial ROS. In order to determine the role of ERK in the proposed signaling pathway that regulates ICl,swell, we examined the effect of ERK inhibitors PD98059 and U0126 on the activation of ICl,swell. Both of these agents partially inhibited SMase-induced activation of ICl,swell, indicating SMase acts through both ERK-dependent and ERK-independent signaling pathways. HL-1 cells are derived from a murine atrial cell line that retains phenotypic characteristics of adult cardiomyocytes. Recently, ICl,swell has been observed in HL-1 cells with similar regulatory mechanisms to those seen in native cells. We showed that SMase elicits an outwardly-rectifying, DCPIB-sensitive Cl− current that reverses near ECl in HL-1 cells. Finally, we confirmed the production of ROS by SMase-induced signaling by flow cytometry in HL-1 cells using the nominally H2O2-selective fluorescent probe CH2DCFDA-AM. Exposure to SMase increased ROS production, as did the positive control H2O2. SMase-induced ROS generation was suppressed by pretreatment with rotenone but was unaffected by pretreatment with gp91ds-tat. These data indicate that exogenous and endogenous sphingolipids elicit ICl,swell in cardiomyocytes by stimulating mitochondrial ROS production. NOX may contribute to the ROS generation, but is not a required step in this mechanism. Sphingolipid signaling is likely to play an important role in stimulating ROS production and activating ICl,swell in a number of cardiovascular diseases.
14

Synthese von neuartigen Sphingosin-Derivaten

Klose-Stier, Alexandra 19 April 2017 (has links)
Sphingolipide sind essentielle Bestandteile der Plasmamembranen aller eukaryotischen Organismen und besitzen als Signalmoleküle regulierende Eigenschaften auf diverse zelluläre Prozesse. Hierbei spielen die G-Protein-gekoppelten S1P-Rezeptoren eine wichtige Rolle. Diese werden durch das natürliche Sphingosin-1-phosphat sowie die Sphingosin-Derivate FTY720 und cis-4-Methylsphingosin selektiv adressiert. Diese Arbeit beschreibt die Synthese von fünfzehn neuartigen Sphingosin-Derivaten mit potenziell neuen biologischen Eigenschaften. Hierfür wurde die Leitstruktur des natürlichen D-erythro-Sphingosins an den Positionen 1, 3 und/oder 4 modifiziert. Die biologischen Studien mit diesen Verbindungen lieferten erste Erkenntnisse zur Inhibition des S1P-induzierten Calcium-Anstiegs, der Wechselwirkung mit den S1P-Rezeptoren und der zellulären Lokalisation in Chlamydia trachomatis infizierten Zellen. Darüber hinaus wurde eine Methode, die einen schnelleren und variablen Zugang zu den 4-verzweigten Sphingosin-Derivaten erlaubt, etabliert. / Sphingolipids are essential constituents of plasma membranes in all eukaryotic organisms. They also participate as signalling molecules in almost all physiological processes. Here G-protein coupled S1P receptors play an important role. These receptors are selectively addressed by natural ligand sphingosine-1-phosphate as well as by sphingosine analogues FTY720 and cis-4-methylsphingosine. This work describes the synthesis of fifteen sphingosine analogues with potential biological activity. For this purpose, the natural lead structure of D-erythro-sphingosine was modified at positions 1, 3 and/or 4. The biological studies of these compounds provided the first insights to the inhibition of S1P-induced calcium increase, the interaction with S1P receptors and the cellular localization in Chlamydia trachomatis infected cells. Moreover, an adapted method that allowed faster and adaptable access to 4-branched sphingosines was established.
15

Regulation of vascular development and homeostasis by platelet-derived Sphingosine 1-Phosphate / Régulation de l’homéostasie et du développement vasculaire par la Sphingosine 1-Phosphate

Gazit, Salomé 05 November 2015 (has links)
La Sphingosine 1-phosphate (S1P) est un lipide bioactif qui joue un rôle majeur dans de nombreux processus tels que le développement vasculaire, la circulation des cellules immunitaires et la régulation de l’intégrité vasculaire. L’absence de S1P circulante engendre une augmentation constitutive de la perméabilité vasculaire ainsi qu’une sensibilité accrue à l’anaphylaxie systémique passive, cependant l’implication respective des différentes sources de la S1P au cours de ces processus, demeure méconnue. Ceci est plus particulièrement vrai pour les plaquettes qui constituent une réserve importante de S1P. La S1P d’origine plaquettaire ne contribue pas au pool de S1P plasmatique, il n’est libéré que lors de l’activation plaquettaire. Nous avons étudié le rôle de la S1P d’origine plaquettaire au sein des vaisseaux sanguins, au cours du développement embryonnaire et chez des souris adultes, en présence ou en absence d’autres sources de S1P circulante, notamment des globules rouges. Par délétion des gènes codant pour les sphingosine kinases 1&2 au sein des megakaryocytes, nous avons généré des souris dont les plaquettes sont incapables de synthétiser et donc de sécréter la S1P. Ces plaquettes sont par ailleurs incapables, in vitro, de promouvoir le maintien de la barrière endothéliale. Néanmoins, une déficience en S1P d’origine plaquettaire n’augmente pas le risque d’hémorragie au cours du développement embryonnaire, dans un contexte d’inflammation, d’irradiation, ou de traumatisme ; cela suggère que la S1P d’origine plaquettaire n’est pas indispensable au cours de ces processus. Cependant, nous avons découvert que la résistance au choc anaphylactique est compromise en l’absence de S1P d’origine plaquettaire. L’aspirine bloquant la sécrétion de S1P par les plaquettes, un traitement à l’aspirine induit également une sensibilisation au choc anaphylactique de façon similaire à celle observée dans le cas d’une déficience en S1P d’origine plaquettaire. Il semblerait que dans ce contexte, la S1P d’origine plaquettaire joue plutôt un rôle pour promouvoir le tonus vasculaire via S1P2, que de maintenir l’intégrité vasculaire. / Sphingosine 1-phosphate (S1P) is a bioactive lipid that plays key roles in vascular development, immune cell trafficking and regulation of vascular integrity. Lack of circulating S1P leads to constitutive vascular leak and sensitivity to passive systemic anaphylaxis, but the relative roles of different sources of S1P in these processes is unclear. This is especially true for platelets, which carry large amounts of S1P but do not contribute S1P to plasma unless activated. We have addressed roles of platelet S1P in developing and mature murine vessels in the presence or absence of other circulating S1P sources, notably red blood cells. By deletion of the genes encoding sphingosine kinases 1&2 in megakaryocytes, we generated mice with platelets that were greatly impaired in their ability to secrete S1P. These platelets were also unable to promote endothelial barrier function in vitro. Nevertheless, platelet S1P deficiency did not sensitize to bleeding during embryonic development, or in association with inflammation, irradiation or traumatic injury, suggesting that platelet S1P is dispensable for these processes. Instead, we find that recovery from anaphylactic shock is impaired in the absence of platelet-derived S1P. Consistent with the ability of aspirin to block S1P release from platelets, it impaired recovery from anaphylactic shock to a similar degree as platelet S1P deficiency. Instead of protecting vascular integrity, platelet-derived S1P appeared to act via the promotion of vascular tone through S1P2 in this context. Collectively, we find that S1P is necessary for the capacity of platelets to promote endothelial barrier function in vitro, but that this capacity becomes redundant in the presence of red blood cell-derived S1P in vivo. Nevertheless, during anaphylactic shock, both sources of S1P are necessary for complete recovery. Blocking S1P release with aspirin, an over-the-counter anti-inflammatory drug, may impair the protective functions of platelet S1P.
16

Antagonist of sphingosine 1-phosphate receptor 3 reduces cold injury of rat donor hearts for transplantation / スフィンゴシン1リン酸受容体3の阻害剤はラット心臓移植における冷保存時のグラフト障害を軽減する

Kanemitsu, Eisho 23 March 2023 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13535号 / 論医博第2275号 / 新制||医||1065(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 伊達 洋至, 教授 湊谷 謙司, 教授 小林 恭 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
17

Fused Heterocycles as Spinster Homolog 2 Inhibitors and Regio- and Stereoselective Copper-Catalyzed Borylation-Protodeboronation of 1,3-Diynes: Access to (Z)-1,3-Enynes

Burgio, Ariel Louise 15 May 2023 (has links)
Sphingosine 1-phosphate (S1P) is a lipid chemoattractant molecule. Once formed, S1P can be transported extracellularly by S1P transporters spinster homolog 2 (Spns2) or major facilitator domain containing 2B (mfsd2b). In the extracellular space, S1P can bind to S1P-specific G-protein coupled receptors (S1PR), which initiate many signaling pathways. A critical role of extracellular S1P is its ability to cause lymphocyte egress, which can have implications for inflammatory and autoimmune diseases. For this reason, there has been a growing interest in exploring potential spns2 inhibitors to further elucidate their therapeutic potential. Initial screenings confirmed that fused heterocycles, including phthalimide and benzoxazoles, demonstrated moderate inhibition of Spns2 using a HeLa cell assay. An extensive structure-activity relationship (SAR) study of these scaffolds was performed to analyze the impact of various amine head groups, regioisomers, and alkyl tails on performance. It was determined that 2-aminobenzoxazoles with secondary amines were potent inhibitors of the transporter. Additionally, the position of the lipophilic tail moiety played a large role in activity. From these modifications, SLB1122168 (2.44p) was found to be our lead compound. It was determined that (2.44p) had an IC50 of 94 ± 6 nM and was shown to be efficacious in decreasing lymphocyte count by 55% in a dose-dependent manner in both rat and mice models. The discovery of (2.44p) can serve as a novel chemical tool to investigate Spns2 biology and use it as a probe to determine the potential of Spns2 as a drug target. Organoboron compounds are useful synthetic intermediates in forming C-X, C-C, and C-H bonds. One way to synthesize these compounds is through copper catalysis. Copper is favorable to other transition metals because it is an Earth-abundant, low-cost metal that can be utilized in regio- and stereoselective reactions. Conjugated 1,3-enynes are important functional groups that iii are found in active natural products, organic synthetic intermediates, and materials. Previous methods used rare transition metals, designer ligands, or harsh acidic conditions to synthesize such compounds. In this dissertation, we developed a stereoselective one-pot copper-catalyzed semi-reduction of 1,3-diynes to produce (Z)-1,3-enynes. This method uses Cu(OAc)2, HBpin and Xantphos to successfully synthesize (Z)-1,3-enynes that were tolerated well over a broad substrate scope, including heterocyclic, alkyl, and aryl substituents. It was determined that this reaction went through a 2-boryl intermediate which was facilitated by a CuH species. / Doctor of Philosophy / Autoimmune diseases are caused by immune cells attacking healthy cells. The signaling lipid sphingosine-1-phosphate (S1P) plays a major role in trafficking immune cells, in which immune cells follow the S1P gradient from low concentrations (secondary lymphoid tissues) to high concentrations (lymph). In the case of multiple sclerosis, immune cells can attack healthy neurons that cause a myriad of symptoms. Currently, there are four drugs approved by the Food and Drug Administration (FDA) targeting the S1P pathway for multiple sclerosis. In all cases, these drugs act as S1P-receptor (S1PR) functional antagonists, which decreases the amount of extracellular S1P, which in turn decreases the immune cells in the lymph that can attack healthy cells. Unfortunately, all four drugs exhibit on-target cardiovascular side effects. To circumvent the on-target side effects seen in current FDA-approved drugs, other nodes of the S1P pathway have been assessed for multiple sclerosis. One node of interest is spinster homolog 2 (Spns2), a transporter of S1P, whose inhibition has also been shown to decrease extracellular S1P. In this dissertation, we will be assessing various inhibitors for their in vitro and in vivo properties. 1,3-Enynes are a functional group found in medicinally relevant compounds and can be used as intermediates to make more complex compounds. Current methods to make this functional group use expensive rare metals or harsh acidic conditions. We developed new methods that utilized copper, an abundant metal, and boron, an atom whose empty p orbital allows for unique reactivity. Utilizing a copper-hydride species allowed us to semi-reduce 1,3-diynes to (Z)-1,3-enynes, where water was used instead of acid to allow for the semi-reduction to occur. This reaction was shown to tolerate a wide range of substrates and gave good to excellent yield.
18

Developing Sphingosine-1-Phosphate (Spns2) Inhibitors for the Treatment of Multiple Sclerosis

Shrader, Christopher Wayne 29 February 2024 (has links)
Doctor of Philosophy / Autoimmune diseases are caused when a person's immune system attacks its own healthy cells. In a person with multiple sclerosis, their immune system becomes sensitized to the myelin sheath that covers their neurons in the central nervous system. This results in the degradation of the myelin sheath and irreversible degradation of the nerve cell axons. This damage leads to the development of several neurological impairments, such as pain, fatigue, mobility problems, and numbness. While there is no cure for multiple sclerosis, disease-modifying therapies are typically taken by patients to suppress their immune system and slow disease progression. Sphingsoine-1-phosphate (S1P) is a lipid that is important for the trafficking of lymphocytes into a person's central nervous system. This trafficking is largely due to the natural gradient of S1P which is high levels in blood but low in tissues. Lymphocytes will follow this gradient from areas of low S1P concentration (lymphatic tissue) to areas with higher S1P concentrations. Modulation of S1P levels is the mechanism of action for several FDA approved drugs as they target primarily S1P1 receptors to achieve lower levels of circulating lymphocytes. However, targeting this receptor also results in cardiovascular side effects such as first-dose bradycardia. The transporter for S1P, spinster homolog 2 (Spns2), which is upstream of the S1P receptors, is another viable target that our lab has recently been targeting. Spns2 inhibition decreases extracellular S1P levels and result in reduced lymphocytes in mice models. In this dissertation, several inhibitors were developed and assessed for their in vitro and in vivo ability to inhibit Spns2.
19

Design and Synthesis of Orally Bioavailable Sphingosine Kinase 2 Selective Inhibitors

Sibley, Christopher David 16 July 2020 (has links)
In humans, mammals, and perhaps all vertebrates, sphingolipids exist as a family of cellular signaling molecules and have been shown to be involved in a wide range of biological processes ranging from proliferation to apoptosis. As such, sphingolipid signaling has garnered the attention of numerous researchers as an attractive candidate for pharmacological manipulation. The synthetic pathway of one prominent sphingolipid, sphingosine 1-phosphate (S1P), has been implicated in a variety of disease states such as cancer, sickle cell disease, multiple sclerosis, and renal fibrosis. Formation of S1P is facilitated from the ATP dependent phosphorylation of sphingosine (Sph) through its generative enzyme's sphingosine kinase 1 and 2 (SphK1 and SphK2). Inhibition of SphK1 and SphK2 results in the manipulation of S1P levels, which has been shown to be therapeutic in various animal models of disease. While there are multiple examples of potent SphK1-selective and dual SphK1/2 inhibitors, SphK2-selective inhibitors are scarce. Herein, we describe the design, synthesis and biological testing of SphK2-selective inhibitors. We first describe the discovery that introducing a trifluoromethyl group onto the internal aryl ring of our inhibitor scaffold led to superior selectivity and potency towards SphK2. We demonstrate that the trifluoromethyl moiety is interacting with a previously unknown side cavity in the substrate binding site of SphK2 that is unique and could be exploited in the design of SphK2-selective inhibitors. The synthesis of 21 derivatives with various substituents spanning off the internal aryl ring was completed, therefore characterizing the preferred size and chemical nature of moieties positioned in that portion of the binding site. This work led to the development of the most potent SphK2-selective inhibitor known at the time. We then describe the transformation of our SphK2-selective inhibitors into an orally bioavailable drug. We explain how the guanidine functionality on our inhibitor scaffold hinders our compounds from being orally bioavailable. Consequently, a library of 24 derivatives with various modifications to the guanidine functionality was synthesized and evaluated for improved orally bioavailability. Highlighted in this work is the development of the most potent SphK2-selective inhibitor currently known 3.14 (SLS1081832), which displays a hSphK2 Ki of 82 nM and 122-fold selectivity for SphK2. Chemical modification and in vivo assessment of 3.14 (SLS1081832) prodrugs was explored. / Doctor of Philosophy / In humans, sphingosine 1-phosphate (S1P) is a signaling molecule that is generated through an ATP dependent reaction of sphingosine (Sph) via sphingosine kinase 1 and 2 (SphK1 and SphK2). Furthermore, S1P has been shown to be implicated in various diseases such as cancer, sickle cell disease, multiple sclerosis, and renal fibrosis. Inhibition of SphK1 and SphK2 has been shown to be therapeutic towards the symptoms of these diseases. Therefore, in order to alleviate these disorders, the concentrations of S1P must be controlled through pharmacological inhibition of SphK1 and SphK2. There are multiple reported examples of potent SphK1-selective and dual SphK1/2 inhibitors; however, SphK2-selective inhibitors are scarce. This work describes the synthesis and biological assessment of 21 compounds for their effectiveness in selectively targeting and inhibiting SphK2. The work led to the discovery of a previously unrecognized side cavity in the binding pocket of SphK2 that enhances inhibitor potency and selectivity towards SphK2. Furthermore, studies characterizing the preferred size and chemical nature of moieties positioned in that portion of the binding site led to the development of the most potent SphK2- selective inhibitor known at the time. Building on this work, we next focused on the transformation of our SphK2-selective inhibitors into a drug that could be administered orally. We describe the synthesis of 24 compounds with various modifications to one portion of our scaffold and their effect on improved orally bioavailability. This work led to the development of the most potent SphK2-selective inhibitor currently known 3.14 (SLS1081832).
20

Migração celular na leucemia/linfoma linfoblástico T: papel do receptor 1 de esfingosina-1-fosfato

Messias, Carolina Valença January 2012 (has links)
Submitted by Ana Paula Macedo (ensino@ioc.fiocruz.br) on 2013-10-03T12:26:40Z No. of bitstreams: 1 Carolina Valença Messias.pdf: 1326403 bytes, checksum: adde2666bf9c1e45634b4ea4926b6090 (MD5) / Made available in DSpace on 2013-10-03T12:26:40Z (GMT). No. of bitstreams: 1 Carolina Valença Messias.pdf: 1326403 bytes, checksum: adde2666bf9c1e45634b4ea4926b6090 (MD5) Previous issue date: 2012 / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil / A leucemia linfoblástica aguda de células T (LLA-T) e o linfoma linfoblástico de células T (LL-T) são proliferações malignas de precursores de células T em diferentes estágios de maturação. LLA-T e LL-T são considerados atualmente duas formas de uma mesma doença, a leucemia/linfoma linfoblástico de células T (LLL-T), por compartilharem características morfológicas, imunofenotípicas e genéticas. Como os blastos de LLL-T apresentam características similares às de timócitos normais, moléculas envolvidas na migração destas células podem também estar envolvidas na migração ou homing dos linfoblastos no curso da doença. Neste sentido, foi demonstrado recentemente que o receptor 1 de esfingosina-1-fosfato (S1P1) é essencial para a saída de timócitos do timo. No presente estudo, decidimos avaliar a expressão e o papel do S1P1 na migração de quatro linhagens celulares de LLA-T (HPB-ALL, MOLT-4, CEM e JURKAT) em resposta ao seu ligante fisiológico, a esfingosina-1-fosfato (S1P). Observamos que a linhagem HPB-ALL apresentou baixa expressão de RNAm de S1P1, enquanto MOLT-4 e JURKAT apresentaram uma expressão mediana e CEM apresentou altos níveis de expressão de RNAm para este receptor. Em ensaios funcionais de migração celular observamos que a capacidade migratória das linhagens frente a S1P foi diretamente relacionada ao nível de expressão gênica do receptor. A S1P induziu a migração das linhagens analisadas em diferentes concentrações até 100 nM, e inibiu a migração quando aplicada em altas concentrações (1000 nM). As respostas migratórias foram acompanhadas pela modulação do citoesqueleto de actina. Dependendo da concentração de S1P utilizada, observamos polimerização (menores concentrações) ou despolimerização (maiores concentrações) da actina. Além disso, o prétratamento das células com W146 (inibidor de S1P1) bloqueou a migração das linhagens frente à S1P em menores concentrações e induziu a migração frente à S1P em altas concentrações, sugerindo que a migração seja especificamente mediada por S1P1. Nossos resultados sugerem que as interações mediadas por S1P/S1P1 modulam a migração não apenas de precursores de células T normais, mas também de linfoblastos de LLL-T. Desta forma, a interação S1P/S1P1 pode ser considerada como alvo para possíveis estratégias terapêuticas frente a estas neoplasias. / T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma (TLBL) are malignant proliferations of T cell precursors at different stages of normal development. T-ALL and T-LBL are presently believed to represent two different forms of a single disease, the T-cell lymphoblastic leukemia/lymphoma (T-LLL), as they share morphological, immunophenotypic and genetic features. As T-LLL lymphoblasts present similar characteristics of normal T cell precursors, molecules involved on the migration of these cells might also be associated with migration and homing of T-ALL/LBL. In this context, the sphingosine-1-phosfate receptor 1 (S1P1), has been described as essential for mouse thymocyte migration and thymic egress. Herein, we evaluated the expression and role of S1P1 in four T-ALL cell lines (HPBALL, MOLT-4, CEM e JURKAT) in response to its physiological ligand, the sphingosine-1-phophate (S1P). We observed that HPB-ALL cells presented low expression levels of S1P1 mRNA, whereas MOLT-4 and JURKAT had medium levels and CEM showed high levels of S1P1 expression. In functional migration assays, we observed that the migratory response of the cells towards S1P was directly related with their expression levels of the receptor. S1P induced the migration of the cell lines analyzed in different concentrations up to 100 nM and inhibited cell migration at higher concentrations (1000 nM). Moreover, migratory responses were accompanied by the modulation of actin cytoskeleton. Depending on S1P concentrations, we observed actin polymerization (lower concentrations) or depolymerization (higher concentrations). Pre-treatment of the cells with W146 (a S1P1 inhibitor) blocked S1Pinduced migration at lower concentrations but induced migration towards S1P at high concentrations, suggesting that the migration is specifically mediated by S1P1. Our results suggest that interactions mediated by S1P/S1P1 can modulate cell migration of T-LLL blasts similarly to their normal T cell precursor counterparts. Accordingly, immune intervention upon this ligand/receptor interaction may be envisioned as a potential therapeutic strategy for these malignancies.

Page generated in 0.0362 seconds