• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • Tagged with
  • 18
  • 17
  • 10
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Clonagem e super expressão dos genes do catabolismo de xilose em Burkholderia sacchari e avaliação do seu efeito na repressão catabólica e produção de polihidroxibutirato a partir de açúcares hemicelulósicos. / Cloning and overexpression of xylose catabolism genes of Burkholderia sacchari and evaluation of the impact on catabolic repression and Polyhydroxybutyrate production using hemicellulosic sugars.

Bautista, Linda Priscila Guaman 07 February 2017 (has links)
A produção de PHAs é limitada devido ao alto custo da fonte de carbono para á produção. No Brasil, o uso de xilose uma fonte de carbono abundante no bagaço de cana é uma alternativa. Neste estudo o catabolismo de xilose em B. sacchari foi estudado para explorar seu potencial para a produção de PHB. Primeiro a organização do operon de xilose foi descrita e foi demostrado que a superexpressão de xylAB melhoro a velocidade máxima de crescimento assim como o teor de acumulo de PHB. Depois foi identificado o fenômeno de repressão catabólica, o qual foi abolido a traves da superexpressão dos genes xylE xylAB. Finalmente foi criado um set de plasmídeos induzíveis para fazer engenharia no consume de xilose em B. sacchari. A superexpressão de xylR permitiu que B. sacchari atinge a velocidade máxima de crescimento mais alta reportada e o melhor fator de conversão de xilose a PHB. Foi concluído então que a superexpressão de xylAB e xylR ajudam a melhorar a velocidade máxima de crescimento e a capacidade de acumulo de PHB usando xylose como fonte de carbono em B. sacchari. / Polyhydroxyalkanoate production is limited by the high production cost of carbon sources. The use of cheap carbon sources like xylose is an alternative to address this issue. In this work we aimed to understand and engineer xylose catabolism in B. sacchari, a bacteria isolated in Brazil to exploit its potential for producing PHB from renewable sources. Initially, we described organization of xylose assimilation genes and demonstrated that xylAB overexpression is an efficient strategy to improve B. sacchari growth rate and production of PHB using xylose as sole carbon source, achieving the highest conversion rate and titer described. Then we identified B. sacchari sequential preference for different sugars (glucose>arabinose>xylose) and overexpress xylE-xylAB to abolish this preference. Finally we created a set of inducible vectors and use them to engineer xylose metabolism. Overexpression of xylR, allowed B. sacchari cells to achieve the highest growth rate and PHB conversion factor and yield reported using xylose as a sole carbon source. Finally, we conclude that overexpression of xylAB and xylR genes improved growth rate, conversion factor and yield when PHB is produced using xylose as carbon source in B. sacchari.
2

Management Strategies for Sugarcane Aphid, Melanaphis Sacchari (Zehntner), in Grain Sorghum

Lipsey, Brittany Etheridge 06 May 2017 (has links)
Grain sorghum is a drought tolerant crop used in the Mid-south region in rotation with corn, cotton, soybeans, and corn. In 2015 and 2016, research was conducted to determine the influence of insecticide treatment, planting date, planting population, hybrid, and environmental temperatures on sugarcane aphid, Melanaphis sacchari (Zehntner), populations and yield in grain sorghum, Sorghum bicolor (L.) Moench. In general, cooler temperatures had a negative effect on sugarcane aphid control with sulfoxaflor and flupyradifurone. Additionally, there was a negative relationship between grain sorghum plant population and sugarcane aphid densities per plant. These data suggest management of sugarcane aphid with insecticide seed treatments and foliar sprays is critical for maximizing grain sorghum yields. Additionally, growers should wait for warmer temperatures to ensure optimum control.
3

Avaliação de genes para o catabolismo de xilose e seu potencial para geração de bioprodutos. / Evaluation of xylose catabolism genes and their potential for the generation of bioproducts.

Cherix, Juliano 06 April 2015 (has links)
A xilose é um dos principais componentes dos materiais lignocelulósicos, os quais são de grande interesse para produção de bioprodutos como etanol e polihidroxialcanoatos (PHA). Visando melhorar o consumo de xilose em Burkholderia sacchari, uma grande produtora de PHA, os seguintes genes codificadores de xilose isomerase foram nela inseridos e avaliados: xylABs, xylABc, xylAPl, xylABp e xylABx, respectivamente de B. sacchari, B. cenocepacia, Photorhabdus luminescens, B. phymatum e B. xenovorans. Foi ainda sintetizado o gene de B. sacchari (xylA*) no qual foram inseridas modificações descritas na literatura como capazes de aumentar o consumo de xilose em outros organismos. As linhagens recombinantes de B. sacchari abrigando os genes xylABs e xylA* tiveram um aumento de aproximadamente 30%, e aquelas abrigando os genes xylABp e xylABx de 23%, no consumo de xilose quando comparadas com a linhagem controle. Essas quatro linhagens recombinantes foram aquelas que conseguiram produzir maior quantidade de P3HB, aproximadamente 70% a mais do que linhagem controle. / Xylose is a major component of lignocellulosic materials, which are of great interest for the production of bio-products, such as ethanol and polyhydroxyalkanoates (PHA). To improve the consumption of xylose in Burkholderia sacchari, a major PHA producer, the following genes, encoding xylose isomerase, were introduced in these bacteria: xylABs, xylABc, xylAPl, xylABp and xylABx, respectively from B. sacchari, B. cenocepacia, Photorhabdus luminescens, B. phymatum e B. xenovorans. The gene of B. sacchari (xylA*) was also synthesized with several modifications described in the literature as able to increase the consumption of xylose in other organisms. Recombinant strains harboring B. sacchari xylABs and xylA* gene had an increase of approximately 30% in the xylose consumption compared to the control strain, and those harboring xylABx and xylABp gene an increase of 23%. These four recombinant strains were those that were able to produce more P3HB, approximately 70% more than the control strain.
4

Alfa-oxidação de propionato está envolvida na redução da produção de plástico biodegradável em Burkholderia sacchari? / Is propionate alfa-oxidation involved in the reduction of biodegradable plastic production in Burkholderia sacchari?

Cintra, Ana Carolina Suzuki Dias 09 May 2008 (has links)
Burkholderia sacchari é uma nova espécie bacteriana do solo brasileiro que tem a capacidade de crescer em sacarose e acumular grânulos intracelulares de poliésteres pertencentes à família dos polihidroxiaIcanoatos (PHA). Quando cultivado em sacarose, o homopolímero poli-3¬hidroxibutirato é acumulado por esta bactéria, que é usado como um plástico biodegradável e biocompatível. Quando sacarose e ácido propiônico são fornecidos como fontes de carbono, as células de B. sacchari acumulam o copolímero poli-3-hidroxibutirato-co-3-hidroxivalerato (P3HB-co-3HV). Entretanto, uma pequena porcentagem do ácido propiônico fornecido é convertido a unidades 3HV devido à eficientes vias catabólicas que convertem este substrato preferencialmente a biomassa, CO2 e água, reduzindo portanto a eficiência da produção do polímero. Ao menos duas vias do catabolismo de propionato foram previamente propostas em B. sacchari: a-oxidação e ciclo do 2-metilcitrato (2MCC), sendo somente a última confilmada no nível molecular. Mutantes UV, obtidos anteriormente, foram incapazes de crescer em propionato (prp) e também apresentaram fenótipo afetado no crescimento em intermediários da a-oxidação. No presente trabalho, após uma busca em bibliotecas genômicas de B. sacchari, uma delas construída também no presente trabalho, três diferentes fragmentos de DNA presentes nos clones AI, PI e P2 foram capazes de restaurar o fenótipo prp+ aos mutantes. Experimentos quantitativos revelaram que AI somente restaurou parcialmente a conversão de propionato a unidades 3HV aos mutantes. PI foi capaz de restaurar a capacidade de crescimento em propionato, e em outros intermediários da a-oxidação, a um dos mutantes. Um DNA de 1.2 Kb, subfragmento de PI, ainda capaz de complementar mutantes prp, foi subclonado e seqüenciado, demonstrando similaridade a seqüências de DNA codificadoras de reguladores transcricionais do tipo LysR de várias bactérias, incluindo espécies de Bllrkholderia. Regiões adjacentes a LysR em diferentes genomas de Burkholderia são anotados como codificadores de acil-CoA desidrogenases, ao lado de proposta acil-CoA transferases/carnitina desidrogenases e de uma permease do facilitador maior da superfamília MFS-l. Após confirmação das mesmas regiões adjacentes em B. sacchari e também a sua específica deleção, será possível provar a presença da via do catabolismo de propionato indicada neste trabalho. / Burkholderia sacchari is a new bacterial species from brazilian soil, able to grow in sucrose, accumulating intracellular granules of polyester belonging to the polyhydroxyalkanoate family (PHA). When cultivated on sucrose, the homopolymer poly-3-hydroxybutyrate is accumulated by this bacterium, which is used as biodegradable and biocompatible plastic. When sucrose and propionic acid are supplied as carbon sources, B. sacchari cells accumulate the copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HB-co-3HV). However, a small percentage ofthe propionic acid supplied is converted to 3HV units, because efficient catabolic pathways convert this substrate preferentially to biomass, CO2 and water, thus reducing the efficiency of polymer production. At least two propionate catabolic pathways have been previously indicated in B. sacchari: a-oxidation and the 2-methylcitric acid (2MCC), the latter confirmed at molecular leveI. UV mutants previously obtained were unable to grow in propionate (prp) and also showed the phenotype affected concerning grow on intermediates of propionate a-oxidation. In the present work, after a screening in B. sacchari genomic libraries, one ofthem constructed also in the present work, the prp + phenotype was restored to the mutants by three different DNA fragments harbored by dones A), PI and P2. Quantitative experiments revealed that AI restored only partially the quantitative conversion of propionate to 3HV units to the mutants. PI restored the ability to grow in propionate and in other intermediates of a-oxidation to one prp mutant. A DNA 1.2 Kb subfragment of PI, still able to complement prp mutants, was subcloned and sequenced, showing similarity to DNA sequences encoding to LysR-type transcriptional regulators of various bacteria, including BlIrkholderia species. Adjacent regions to LysR in different genomes of BlIrkholderia are annotated as encoding to acyl-CoA dehydrogenases, neighboring a predicted acyl-CoA transferases/carnitine dehydratase and a permease ofthe major facilitator superfamily MFS-1. After confirmation ofthe same adjacent regions in B. sacchari and also their especific deletion, it will be possible to prove the presence of the pathway indicated here in the catabolism of propionate.
5

Alfa-oxidação de propionato está envolvida na redução da produção de plástico biodegradável em Burkholderia sacchari? / Is propionate alfa-oxidation involved in the reduction of biodegradable plastic production in Burkholderia sacchari?

Ana Carolina Suzuki Dias Cintra 09 May 2008 (has links)
Burkholderia sacchari é uma nova espécie bacteriana do solo brasileiro que tem a capacidade de crescer em sacarose e acumular grânulos intracelulares de poliésteres pertencentes à família dos polihidroxiaIcanoatos (PHA). Quando cultivado em sacarose, o homopolímero poli-3¬hidroxibutirato é acumulado por esta bactéria, que é usado como um plástico biodegradável e biocompatível. Quando sacarose e ácido propiônico são fornecidos como fontes de carbono, as células de B. sacchari acumulam o copolímero poli-3-hidroxibutirato-co-3-hidroxivalerato (P3HB-co-3HV). Entretanto, uma pequena porcentagem do ácido propiônico fornecido é convertido a unidades 3HV devido à eficientes vias catabólicas que convertem este substrato preferencialmente a biomassa, CO2 e água, reduzindo portanto a eficiência da produção do polímero. Ao menos duas vias do catabolismo de propionato foram previamente propostas em B. sacchari: a-oxidação e ciclo do 2-metilcitrato (2MCC), sendo somente a última confilmada no nível molecular. Mutantes UV, obtidos anteriormente, foram incapazes de crescer em propionato (prp) e também apresentaram fenótipo afetado no crescimento em intermediários da a-oxidação. No presente trabalho, após uma busca em bibliotecas genômicas de B. sacchari, uma delas construída também no presente trabalho, três diferentes fragmentos de DNA presentes nos clones AI, PI e P2 foram capazes de restaurar o fenótipo prp+ aos mutantes. Experimentos quantitativos revelaram que AI somente restaurou parcialmente a conversão de propionato a unidades 3HV aos mutantes. PI foi capaz de restaurar a capacidade de crescimento em propionato, e em outros intermediários da a-oxidação, a um dos mutantes. Um DNA de 1.2 Kb, subfragmento de PI, ainda capaz de complementar mutantes prp, foi subclonado e seqüenciado, demonstrando similaridade a seqüências de DNA codificadoras de reguladores transcricionais do tipo LysR de várias bactérias, incluindo espécies de Bllrkholderia. Regiões adjacentes a LysR em diferentes genomas de Burkholderia são anotados como codificadores de acil-CoA desidrogenases, ao lado de proposta acil-CoA transferases/carnitina desidrogenases e de uma permease do facilitador maior da superfamília MFS-l. Após confirmação das mesmas regiões adjacentes em B. sacchari e também a sua específica deleção, será possível provar a presença da via do catabolismo de propionato indicada neste trabalho. / Burkholderia sacchari is a new bacterial species from brazilian soil, able to grow in sucrose, accumulating intracellular granules of polyester belonging to the polyhydroxyalkanoate family (PHA). When cultivated on sucrose, the homopolymer poly-3-hydroxybutyrate is accumulated by this bacterium, which is used as biodegradable and biocompatible plastic. When sucrose and propionic acid are supplied as carbon sources, B. sacchari cells accumulate the copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HB-co-3HV). However, a small percentage ofthe propionic acid supplied is converted to 3HV units, because efficient catabolic pathways convert this substrate preferentially to biomass, CO2 and water, thus reducing the efficiency of polymer production. At least two propionate catabolic pathways have been previously indicated in B. sacchari: a-oxidation and the 2-methylcitric acid (2MCC), the latter confirmed at molecular leveI. UV mutants previously obtained were unable to grow in propionate (prp) and also showed the phenotype affected concerning grow on intermediates of propionate a-oxidation. In the present work, after a screening in B. sacchari genomic libraries, one ofthem constructed also in the present work, the prp + phenotype was restored to the mutants by three different DNA fragments harbored by dones A), PI and P2. Quantitative experiments revealed that AI restored only partially the quantitative conversion of propionate to 3HV units to the mutants. PI restored the ability to grow in propionate and in other intermediates of a-oxidation to one prp mutant. A DNA 1.2 Kb subfragment of PI, still able to complement prp mutants, was subcloned and sequenced, showing similarity to DNA sequences encoding to LysR-type transcriptional regulators of various bacteria, including BlIrkholderia species. Adjacent regions to LysR in different genomes of BlIrkholderia are annotated as encoding to acyl-CoA dehydrogenases, neighboring a predicted acyl-CoA transferases/carnitine dehydratase and a permease ofthe major facilitator superfamily MFS-1. After confirmation ofthe same adjacent regions in B. sacchari and also their especific deletion, it will be possible to prove the presence of the pathway indicated here in the catabolism of propionate.
6

Avaliação de genes para o catabolismo de xilose e seu potencial para geração de bioprodutos. / Evaluation of xylose catabolism genes and their potential for the generation of bioproducts.

Juliano Cherix 06 April 2015 (has links)
A xilose é um dos principais componentes dos materiais lignocelulósicos, os quais são de grande interesse para produção de bioprodutos como etanol e polihidroxialcanoatos (PHA). Visando melhorar o consumo de xilose em Burkholderia sacchari, uma grande produtora de PHA, os seguintes genes codificadores de xilose isomerase foram nela inseridos e avaliados: xylABs, xylABc, xylAPl, xylABp e xylABx, respectivamente de B. sacchari, B. cenocepacia, Photorhabdus luminescens, B. phymatum e B. xenovorans. Foi ainda sintetizado o gene de B. sacchari (xylA*) no qual foram inseridas modificações descritas na literatura como capazes de aumentar o consumo de xilose em outros organismos. As linhagens recombinantes de B. sacchari abrigando os genes xylABs e xylA* tiveram um aumento de aproximadamente 30%, e aquelas abrigando os genes xylABp e xylABx de 23%, no consumo de xilose quando comparadas com a linhagem controle. Essas quatro linhagens recombinantes foram aquelas que conseguiram produzir maior quantidade de P3HB, aproximadamente 70% a mais do que linhagem controle. / Xylose is a major component of lignocellulosic materials, which are of great interest for the production of bio-products, such as ethanol and polyhydroxyalkanoates (PHA). To improve the consumption of xylose in Burkholderia sacchari, a major PHA producer, the following genes, encoding xylose isomerase, were introduced in these bacteria: xylABs, xylABc, xylAPl, xylABp and xylABx, respectively from B. sacchari, B. cenocepacia, Photorhabdus luminescens, B. phymatum e B. xenovorans. The gene of B. sacchari (xylA*) was also synthesized with several modifications described in the literature as able to increase the consumption of xylose in other organisms. Recombinant strains harboring B. sacchari xylABs and xylA* gene had an increase of approximately 30% in the xylose consumption compared to the control strain, and those harboring xylABx and xylABp gene an increase of 23%. These four recombinant strains were those that were able to produce more P3HB, approximately 70% more than the control strain.
7

Avaliação do potencial de Burkholderia sacchari produzir o copolimero biodegradável poli(3-hidroxibutirato-co-3-hidroxihexanoato) [P(3HB-co-3HHX)]. / Evaluating the potential of Burkholderia sacchari to produce the biodegradable copolymer poly (3-hydroxybutirate-co-3-hydroxyhexanoate).

Mendonça, Thatiane Teixeira 11 February 2010 (has links)
A capacidade de B. sacchari acumular poli-3-hidroxibutirato-co-3-hidroxihexanoato (P3HB-co-3HHx) foi confirmada, com até 2 mol% de 3HHx no PHA total (<10% do 3HHx máximo teórico a partir do ácido), indicando flexibilidade da PHA sintase por substratos, porém alta eficiência nas vias catabólicas do hexanoato. Análise da estabilidade térmica do PHA indicou uma temperatura de degradação reduzida, compatível com a presença de unidades 3HHx. Mutantes incapazes de crescer em ácido hexanóico foram obtidos com UV e transposon mini-Tn5, que ainda acumulavam 3HHx a partir de hexanoato mas com redução na capacidade do acúmulo de 3HB e 3HHx. Foram construídos recombinantes abrigando o gene phaB (codificador de 3-cetoacil-CoA redutase) de Ralstonia eutropha ou phaJ1 e phaJ2 (codificadores de enoil-CoA hidratases R-específicas) de Pseudomonas aeruginosa. A expressão de phaB ou phaJ1 aumentou a canalização de 3HB para a PHA sintase, apesar de não aumentar as frações de 3HHx. Monômeros de 3HHx e 3HO foram detectados a partir de ácidos butírico e octanóico, respectivamente. / The ability of B. sacchari to accumulate poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (P3HB-co-3HHx) from glucose and hexanoic acid was confirmed. 3HHx content was up to 2 mol% of PHA (<10% of the maximum theoretical 3HHx from the acid), indicating a substrate flexibility of B. sacchari PHA synthase, but high efficiency of hexanoate catabolic pathways. Thermal stability analysis of the copolymer indicated a reduced degradation temperature compatible with 3HHx units. Mutants unable to grow on hexanoic acid were obtained with UV and mini-Tn5 transposon. They still accumulated 3HHx from hexanoate, but the ability to accumulate 3HB and 3HHx was reduced. Recombinants harboring the Ralstonia eutropha phaB (encoding 3-ketoacyl-CoA reductase) and Pseudomonas aeruginosa phaJ1 and phaJ4 genes (encoding R-specific enoyl-CoA hydratases) were constructed. Expression of both phaB and phaJ1 increased the channeling of 3HB to the PHA synthase, despite no increase on 3HHx fraction was observed. 3HHx and 3HO monomers were detected from butyric and octanoic acids, respectively.
8

Identificação em bases moleculares de genes de Burkholderia sacchari envolvidos no catabolismo de propianato via &#945;-oxidação. / Identification on a molecular basis of the &#945;-oxidation pathway in the consumption of propionate in Burkholderia sacchari.

Lemos, Aline Carolina da Costa 11 May 2017 (has links)
Burkholderia sacchari é uma espécie de bactéria capaz de acumular polihidroxialcanoatos em condições de limitação de um nutriente essencial e excesso de fonte de carbono. A partir do substrato sacarose, acumula o polímero poli-3-hidroxibutirato (P3HB), poliéster biodegradável de propriedades semelhantes às dos plásticos de origem petroquímica. A partir de sacarose e propionato como fontes de carbono, ela é capaz de acumular o copolímero poli-3-hidroxibutirato-co-3-hidroxivalerato (P3HB-co-3HV), que é mais maleável que o polímero P3HB. No entanto, apenas uma pequena porcentagem do propionato fornecido é convertida em 3HV. Isto se deve à presença de outras vias de catabolismo muito eficientes que transformam o propionato em biomassa, reduzindo a eficiência na produção do copolímero. Estudos em mutantes UV prp-, indicaram que duas vias de catabolismo de propionato podem atuar em B. sacchari: &#945;-oxidação e o ciclo de 2-metilcitrato (2MCC). Esta última teve sua comprovação molecular comprovada, já a outra ainda está sendo estudada, mutantes afetados no consumo de intermediários da &#945;-oxidação foram complementados fragmentos de DNA, obtidos de uma biblioteca genômica de B. sacchari os quais, após sequenciamento e comparação do banco de dados, verificou-se codificarem um regulador transcricional LysR. A análise dos genes adjacentes ao regulador sugeriu que poderiam compor um operon de uma via de &#945;-oxidação. Diante disso, este trabalho busca a comprovação molecular da via da &#945;-oxidação para o catabolismo de propionato em B. sacchari. / Burkholderia sacchari is a species of bacteria capable of accumulating polyhydroxyalkanoates under limiting conditions of an essential nutrient and excess carbon source. From the sucrose substrate, it accumulates polymer poly-3-hydroxybutyrate (P3HB), biodegradable polyester with properties similar to those of petrochemical plastics. From sucrose and propionate as carbon sources, it is able to accumulate the poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HB-co-3HV) copolymer, which is more malleable than the polymer P3HB. However, only a small percentage of the supplied propionate is converted into 3HV. This is due to the presence of other very efficient catabolic pathways that transform the propionate into biomass, reducing the production efficiency of the copolymer. Studies on prp- UV mutants have indicated that two pathways of propionate catabolism may act on B. sacchari: the &#945;-oxidation and the 2-methylcitrate cycle (2MCC). The latter had its molecular proof proven, while the other is still being studied, mutants affected in the consumption of &#945;-oxidation intermediates were complemented DNA fragments obtained from a genomic library of B. sacchari which, after sequencing and comparison of the bank Coding for a LysR transcriptional regulator. Analysis of the genes adjacent to the regulator suggested that they could compose an operon of an &#945;-oxidation pathway. In view of this, this work seeks the molecular proof of the &#945;-oxidation pathway for the propionate catabolism in B. sacchari.
9

Avaliação do sistema de mobilização de poli-3-hidroxibutirato em Burkholderia sacchari. / Evaluation of poly-3-hydroxybutyrate (P3HB) mobilization system in Burkholderia sacchari.

Castellanos, Nuri Andrea Merchan 19 October 2010 (has links)
O sistema de mobilização intracelular de poli-3-hidroxibutirato (P3HB) em Burkholderia sacchari foi analisado. A busca em genomas de Burkholderia spp. identificou duas oligômero hidrolases (PhaY1 e PhaY2) e pelo menos três P3HB despolimerases intracelulares (PhaZa1, PhaZa2 e PhaZd1). Mutantes de B. sacchari afetados na mobilização de P3HB e complementados com genes de Ralstonia eutropha apresentaram um aumento expressivo nas taxas de mobilização de P3HB, especialmente quando o gene phaZa1 foi superexpresso. A superexpressão dos genes phaZa2 ou phaZa3 também conduziu a aumentos nas taxas de mobilização embora em um grau menor que os valores obtidos com phaZa1. Dois mutantes afetados na mobilização de P3HB foram obtidos utilizando o transposon mini-Tn5 (NAM03 e NAM04). NAM03 apresentou interrupção em gene que codifica uma P3HB despolimerase intracelular (PhaZa1). NAM04 apresentou interrupção em gene anotado como serino peptidase LonA. Este pode representar um ativador da mobilização ou uma nova P3HB despolimerase intracelular. / The intracellular poly-3-hydroxybutyrate (P3HB) mobilization system in Burkholderia sacchari was analyzed. A search in Burkholderia spp. genomes identified two oligomer hydrolases (PhaY1 and PhaY2) and at least three intracellular P3HB depolymerase (PhaZa1, PhaZa2 e PhaZd1). B. sacchari mutants affected on P3HB mobilization and complemented by Ralstonia eutropha genes showed an expressive increase on P3HB mobilization rates, especially when phaZa1 was overexpressed. The overexpression of phaZa2 or phaZa3 also increased the mobilization rates though to a lesser extent than phaZa1. Two mutants affected on P3HB mobilization were obtained using the transposon mini-Tn5 (NAM03 and NAM04) .NAM03 was disrupted in a gene encoding an intracellular P3HB depolymerase (PhaZa1). NAM04 was disrupted in a gene annotated as a serine peptidase LonA. This could be a mobilization activator or a new intracellular P3HB depolymerase.
10

Avaliação do potencial de Burkholderia sacchari produzir o copolimero biodegradável poli(3-hidroxibutirato-co-3-hidroxihexanoato) [P(3HB-co-3HHX)]. / Evaluating the potential of Burkholderia sacchari to produce the biodegradable copolymer poly (3-hydroxybutirate-co-3-hydroxyhexanoate).

Thatiane Teixeira Mendonça 11 February 2010 (has links)
A capacidade de B. sacchari acumular poli-3-hidroxibutirato-co-3-hidroxihexanoato (P3HB-co-3HHx) foi confirmada, com até 2 mol% de 3HHx no PHA total (<10% do 3HHx máximo teórico a partir do ácido), indicando flexibilidade da PHA sintase por substratos, porém alta eficiência nas vias catabólicas do hexanoato. Análise da estabilidade térmica do PHA indicou uma temperatura de degradação reduzida, compatível com a presença de unidades 3HHx. Mutantes incapazes de crescer em ácido hexanóico foram obtidos com UV e transposon mini-Tn5, que ainda acumulavam 3HHx a partir de hexanoato mas com redução na capacidade do acúmulo de 3HB e 3HHx. Foram construídos recombinantes abrigando o gene phaB (codificador de 3-cetoacil-CoA redutase) de Ralstonia eutropha ou phaJ1 e phaJ2 (codificadores de enoil-CoA hidratases R-específicas) de Pseudomonas aeruginosa. A expressão de phaB ou phaJ1 aumentou a canalização de 3HB para a PHA sintase, apesar de não aumentar as frações de 3HHx. Monômeros de 3HHx e 3HO foram detectados a partir de ácidos butírico e octanóico, respectivamente. / The ability of B. sacchari to accumulate poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (P3HB-co-3HHx) from glucose and hexanoic acid was confirmed. 3HHx content was up to 2 mol% of PHA (<10% of the maximum theoretical 3HHx from the acid), indicating a substrate flexibility of B. sacchari PHA synthase, but high efficiency of hexanoate catabolic pathways. Thermal stability analysis of the copolymer indicated a reduced degradation temperature compatible with 3HHx units. Mutants unable to grow on hexanoic acid were obtained with UV and mini-Tn5 transposon. They still accumulated 3HHx from hexanoate, but the ability to accumulate 3HB and 3HHx was reduced. Recombinants harboring the Ralstonia eutropha phaB (encoding 3-ketoacyl-CoA reductase) and Pseudomonas aeruginosa phaJ1 and phaJ4 genes (encoding R-specific enoyl-CoA hydratases) were constructed. Expression of both phaB and phaJ1 increased the channeling of 3HB to the PHA synthase, despite no increase on 3HHx fraction was observed. 3HHx and 3HO monomers were detected from butyric and octanoic acids, respectively.

Page generated in 0.0414 seconds