Spelling suggestions: "subject:"same system""
1 |
Factors Affecting Severity Level in Speed-Related Crashes and in Identification of Crashes Involving Exceeding Maximum Safe Travel SpeedTanim, Md Fardeen 30 August 2024 (has links)
This research investigates factors that influence severity of speed-related crashes on mainline roadway segments, with a particular emphasis on comparing single-vehicle and multiple-vehicle incidents and distinguishing between crashes involving legal speed limit violations and those exceeding the maximum safe travel speed as determined by law enforcement. Additionally, it examines significant factors related to classifying a crash as exceeding the maximum safe travel speed. Using crash data from the Traffic Records Electronic Data System (TREDS) for Virginia for 2023, the research employs both Ordinal and Nominal Logistic Regression models for analysis. The findings reveal that higher vehicle speeds before a crash significantly increase crash severity level across all scenarios. Rain and snow/sleet weather conditions exhibit significant impacts on crash outcomes, with adverse conditions often leading to increased severity levels. Roadway characteristics in terms of presence of medians and road surface conditions, are also found to be significant, as are. the driver-related factors of age, safety equipment used, EMS transport after the crash, and vehicle type. The study's comparative analysis between single and multiple vehicles speeding crashes, as well as speeding beyond legal limits and exceeding maximum safe travel speed highlights the contextual differences in crash severity determinants. The findings on classifying crashes as exceeding maximum safe travel speed highlight conditions that influence this designation as well as factors that can lead to inconsistencies in that classification. For example, environmental conditions like rain or snow, certain crash types, and work zone crashes may result in subjective assessments rather than objective determinations. The research offers valuable insights for informing targeted road safety strategies within the Safe System framework – targeted at reducing the severity of speed-related crashes for mainline road segments. The findings support implementing comprehensive strategies that address the complex interplay of speed, road conditions, vehicle characteristics, and driver factors in mitigating crash severity. / Master of Science / This research explores how speeding affects the severity of car crashes, seeking to understand why some accidents are more dangerous than others. By analyzing crash data from Virginia in 2023, the study looks at different types of crash scenarios – those involving just one vehicle and those involving multiple vehicles – and examines how factors like weather, road conditions, vehicle and driver characteristics contribute to the seriousness of these crashes. The research compares crashes where drivers exceed the legal speed limit with those where they drive faster than is safe under the given road conditions. Additionally, it investigates key factors that potentially influence law enforcement at the scene to designate that a crash involves a driver exceeding the safest speed for road and traffic conditions. The findings show that driving at higher speeds before a crash significantly increases the chances of severe injuries or fatalities. The study indicates how weather conditions, design characteristics of roads, or the condition of the road surface, impact crash severity. Driver age and whether drivers were under the influence of alcohol or drugs, and whether vehicle safety equipment like seatbelts were used, are significant in determining the severity of a crash. The findings on classifying crashes as exceeding maximum safe travel speed highlight conditions that influence this designation as well as factors that can lead to inconsistencies in that classification. This research is important because it provides insights for improving road safety.
|
2 |
Digital twin of a safe systemEdenhamn, Johan January 2022 (has links)
At Epiroc’s drill rigs a safe system is installed to make sure the vehicle is driven in a safe manner. In the development both machine tests and hardware-in-the-loop (HIL) tests have been performed but when changes are made the firmware in the safe modules has to be updated. To speed up the process a digital twin would be beneficial. This enables testing of parameters and formulation of criteria detecting faults. The purpose of the work is to develop a digital twin for steering and braking safe functions and evaluate the performance using data from machines as well as data from a HIL-rig. Also, the impact of the hydraulic model used in the HIL-rig is investigated. When the model is built two test cases are used to investigate how well the model replicates the behaviour of the real system and how sensitive it is to what input data is used. The biggest difference in the data is the sampling time, machine logs have 80 ms interval while logs from the rig are logged every 5 ms. It is discovered that some of the fault detection functions work very well no matter what data is used while others must have the better resolution to be trusted. The complexity of the hydraulic model used impacts the pressures but seem to have little effect on which fault codes are activated. With this the main purpose is partly achieved and further investigation is needed before the model can be used for all fault codes.
|
3 |
Applications of Event Data Recorder Derived Crash Severity Metrics to Injury PreventionDean, Morgan Elizabeth 25 May 2023 (has links)
Since 2015, there have been more than 35,000 fatalities annually due to crashes on United States roads [1], [2]. Typically, road departure crashes account for less than 10% of all annual crash occupants yet comprise nearly one third of all crash fatalities in the US [3]. In the year 2020, road departure crashes accounted for 50% of crash fatalities [2]. Road departure crashes are characterized by a vehicle leaving the intended lane of travel, departing the roadway, and striking a roadside object, such as a tree or pole, or roadside condition, such as a slope or body of water. One strategy currently implemented to mitigate these types of crashes is the use of roadside barriers. Roadside barriers, such as metal guardrails, concrete barriers, and cable barriers, are designed to reduce the severity of road departure crashes by acting as a shield between the departed vehicle and more hazardous roadside obstacles. Much like new vehicles undergo regulatory crash tests, barriers must adhere to a set of crash test procedures to ensure the barriers perform as intended. Currently, the procedures for full-scale roadside barrier crash tests used to evaluate the crash performance of roadside safety hardware are outlined in The Manual for Assessing Safety Hardware (MASH) [4].
During roadside barrier tests, the assessment of occupant injury risk is crucial, as the purpose of the hardware is to prevent the vehicle from colliding with a more detrimental roadside object, all the while minimizing, and not posing additional, risk to the occupants. Unlike the new vehicle regulatory crash tests conducted by the National Highway Traffic Safety Administration (NHTSA), MASH does not require the use of instrumented anthropomorphic test devices (ATD). Instead, one of the prescribed occupant risk assessment methods in MASH is the flail space model (FSM), which was introduced in 1981 and models an occupant as an unrestrained point mass. The FSM is comprised of two crash severity metrics that can be calculated using acceleration data from the test vehicle. Each metric is prescribed a maximum threshold in MASH and if either threshold is exceeded during a crash test the test fails due to high occupant injury risk.
Since the inception of the FSM metrics and their thresholds, the injury prediction capabilities of these metrics have only been re-investigated in the frontal crash mode, despite MASH prescribing an oblique 25-degree impact angle for passenger vehicle barrier tests. The focus of this dissertation was to use EDR data from real-world crashes to assess the current relevance of roadside barrier crash test occupant risk assessment methods to the modern vehicle fleet and occupant population. Injury risk prediction models were constructed for the two FSM-based metrics and five additional crash severity metrics for three crash modes: frontal, side, and oblique. For each crash mode and metric combination, four injury prediction models were constructed: one to predict probability of injury to any region of the body and three to predict probability of injury to the head/face, neck, and thorax regions. While the direct application of these models is to inform future revisions of MASH crash test procedures, the developed models have valuable applications for other areas of transportation safety besides just roadside safety. The final two chapters of this dissertation explore these additional applications: 1) assessing the injury mitigation effectiveness of an advanced automatic emergency braking system, and 2) informing speed limit selection that supports the safe system approach.
The findings in this dissertation indicate that both the FSM and additional crash severity metrics do a reasonable job predicting occupant injury risk in oblique crashes. One of the additional metrics performs better than the two FSM metrics. Additionally, several occupant factors, such as belt status and age, play significant roles in occupant risk prediction. These findings have important implications for future revisions of MASH, which could benefit from considering additional metrics and occupant factors in the occupant risk assessment procedures. / Doctor of Philosophy / Every year, there are more than 35,000 fatalities due to crashes on United States roads. While there are many different types of crashes, there is a small collection of crash types that are responsible for the majority of these fatalities. One of the worst crash types is a road departure crash. Road departure crashes describe when a vehicle leaves the roadway and collides with an object off the roadway (such as a tree, pole, or ditch). Road departure crashes typically comprise 10% of crashes but are responsible for more than 30% of the annual crash fatalities. In 2020, road departure crashes were responsible for 50% of the 39,000 fatalities. One strategy that is currently used to reduce road departure fatalities is the use of roadside barriers. Common roadside barrier types include metal guardrails, concrete barriers, and cable guardrails, and are used to prevent vehicles that are departing the roadway from hitting an object that would be more dangerous than the barrier. To ensure barriers successfully protect the vehicle and vehicle occupants from heightened danger, they are crash tested in scenarios that are designed to mimic real-world crashes. The Manual for Assessing Safety Hardware (MASH) is the document that currently outlines the details necessary to conduct one of these crash tests.
During roadside barrier tests, it is crucial to determine whether occupants are at risk of injury or fatality. For a variety of reasons, barrier tests do not use the traditional crash test dummies, which are designed to replicate human presence in a crash vehicle. Instead, MASH recommends using vehicle velocity data to assess how much risk is posed to an occupant. Using this velocity data, two values can be computed and if either value exceeds the maximum values provided in MASH, the crash test fails due to high occupant risk. The suggestion to use velocity data to assess occupant risk was first introduced in 1981. Since then, there have been significant advances in vehicle design, barrier design, and occupants' willingness to partake in safe habits, such as wearing seatbelts. Therefore, it is necessary to determine if the occupant risk values used in MASH are still applicable today. The focus of this dissertation was to use real-world crash data to assess the current relevance of roadside barrier crash test occupant risk values. The results presented in this dissertation can be used to select new occupant risk values in future versions of MASH.
The findings within this dissertation show that the current methods in MASH do a good job estimating an occupant's risk of injury. Additionally, the findings show that certain occupant factors, such as the age of an occupant and whether the occupant is belted, help to more accurately estimate occupant injury risk. This finding has important implications for MASH, which does not currently consider different occupant conditions.
|
4 |
Migration von Relaisschaltungen der Eisenbahnsicherungstechnik auf Programmierbare SchaltkreiseWülfrath, Stefan 12 November 2013 (has links) (PDF)
In der vorliegenden Arbeit werden eine sichere FPGA-Stellwerksplattform und ein Transformationsverfahren entwickelt, mit dem die Schaltungen bestehender Relaisstellwerke in eine FPGA-Logik überführt werden können.
Die FPGA-Stellwerksplattform ersetzt die Innenanlage eines Relaisstellwerks. Ihre Schnittstellen entsprechen den bisherigen Schnittstellen am Kabelabschlussgestell und zur Bedien- und Meldeeinrichtung. Damit ist eine einfache Migration bestehender Stellwerke möglich.
Das Sicherheitskonzept basiert auf einer zweikanaligen Struktur mit sicherem Vergleicher und zusätzlichen Selbsttests zur schnellen, datenflussunabhängigen Ausfalloffenbarung. Die erreichbare Gefährdungsrate liegt im Bereich von SIL 4 und entspricht damit dem Sicherheitsziel für Stellwerke der Deutschen Bahn.
Die Transformation sieht eine Trennung der Stellwerkslogik in Logik- und Leistungsteil vor. Der Logikteil wird auf dem FPGA realisiert. Die im Leistungsteil verbliebenen Kontakte und Überwacherrelais werden durch sichere Stellteile ersetzt. Die logischen Ansteuerbedingungen der Relais werden in Schaltnetze überführt. Die gesteuerten Relais werden durch Instanzen generischer Zustandsmodelle ersetzt. Für jeden verwendeten Relaistyp wurde ein entsprechendes Modell entwickelt, das bei der Transformation als Baustein eingesetzt werden kann.
Die generischen Zustandsmodelle berücksichtigen auch die sicherheitsrelevanten konstruktiven Eigenschaften der Relais. So wird bei der Auftrennung einer Schaltung in Logik- und Leistungsteil sichergestellt, dass die in getrennte Schaltungsteile überführten Öffner und Schließer eines Relais nie gleichzeitig geschlossen sein können (Zwangsführung der Kontakte). Dies ist eine Voraussetzung für die Beibehaltung der sicherheitsrelevanten Funktionsbedingungen der Originalschaltung.
Das Transformationsverfahren und die implementierten Mechanismen zur Ausfalloffenbarung sind unabhängig von der Anwenderlogik und vom gewählten Schaltkreistyp. Damit kann der generierte VHDL-Code bei Obsoleszenz eines Schaltkreises auch auf andere FPGA-Typen portiert werden.
In einer Ressourcenabschätzung wird gezeigt, dass der gewählte Lösungsansatz geeignet ist, die Schaltungen kleinerer Relaisstellwerke vollständig auf einem FPGA zu realisieren.
Die Anwendung des vorgestellten Verfahrens wird am Beispiel der Weichengruppe des Stellwerkstyps GS II DR demonstriert. Das Transformationsverfahren ist aber auch für andere Stellwerksbauformen geeignet. Dabei ist es unerheblich, ob diese nach dem tabellarischen Verschlussplanprinzip oder dem Spurplanprinzip arbeiten.
|
5 |
Migration von Relaisschaltungen der Eisenbahnsicherungstechnik auf Programmierbare SchaltkreiseWülfrath, Stefan 02 September 2013 (has links)
In der vorliegenden Arbeit werden eine sichere FPGA-Stellwerksplattform und ein Transformationsverfahren entwickelt, mit dem die Schaltungen bestehender Relaisstellwerke in eine FPGA-Logik überführt werden können.
Die FPGA-Stellwerksplattform ersetzt die Innenanlage eines Relaisstellwerks. Ihre Schnittstellen entsprechen den bisherigen Schnittstellen am Kabelabschlussgestell und zur Bedien- und Meldeeinrichtung. Damit ist eine einfache Migration bestehender Stellwerke möglich.
Das Sicherheitskonzept basiert auf einer zweikanaligen Struktur mit sicherem Vergleicher und zusätzlichen Selbsttests zur schnellen, datenflussunabhängigen Ausfalloffenbarung. Die erreichbare Gefährdungsrate liegt im Bereich von SIL 4 und entspricht damit dem Sicherheitsziel für Stellwerke der Deutschen Bahn.
Die Transformation sieht eine Trennung der Stellwerkslogik in Logik- und Leistungsteil vor. Der Logikteil wird auf dem FPGA realisiert. Die im Leistungsteil verbliebenen Kontakte und Überwacherrelais werden durch sichere Stellteile ersetzt. Die logischen Ansteuerbedingungen der Relais werden in Schaltnetze überführt. Die gesteuerten Relais werden durch Instanzen generischer Zustandsmodelle ersetzt. Für jeden verwendeten Relaistyp wurde ein entsprechendes Modell entwickelt, das bei der Transformation als Baustein eingesetzt werden kann.
Die generischen Zustandsmodelle berücksichtigen auch die sicherheitsrelevanten konstruktiven Eigenschaften der Relais. So wird bei der Auftrennung einer Schaltung in Logik- und Leistungsteil sichergestellt, dass die in getrennte Schaltungsteile überführten Öffner und Schließer eines Relais nie gleichzeitig geschlossen sein können (Zwangsführung der Kontakte). Dies ist eine Voraussetzung für die Beibehaltung der sicherheitsrelevanten Funktionsbedingungen der Originalschaltung.
Das Transformationsverfahren und die implementierten Mechanismen zur Ausfalloffenbarung sind unabhängig von der Anwenderlogik und vom gewählten Schaltkreistyp. Damit kann der generierte VHDL-Code bei Obsoleszenz eines Schaltkreises auch auf andere FPGA-Typen portiert werden.
In einer Ressourcenabschätzung wird gezeigt, dass der gewählte Lösungsansatz geeignet ist, die Schaltungen kleinerer Relaisstellwerke vollständig auf einem FPGA zu realisieren.
Die Anwendung des vorgestellten Verfahrens wird am Beispiel der Weichengruppe des Stellwerkstyps GS II DR demonstriert. Das Transformationsverfahren ist aber auch für andere Stellwerksbauformen geeignet. Dabei ist es unerheblich, ob diese nach dem tabellarischen Verschlussplanprinzip oder dem Spurplanprinzip arbeiten.
|
Page generated in 0.0751 seconds