Spelling suggestions: "subject:"sales"" "subject:"salle""
11 |
Helical transition metal complexes as catalysts for asymmetric sulfoxidations and aldol addition reactionsBarman, Sanmitra January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Christopher J. Levy / Stepped helical salen complexes with vanadium as the central metal were synthesized and characterized. The helicity in these complexes arise from the fused phenyl rings (phenanthryl and benz[a]anthryl) as sidearms, whereas the chirality arises from the chiral cyclohexyl diamine or binaphthyl diamine backbones. These complexes showed good yields and moderate enantioselectivity in asymmetric sulfoxidation reactions with methylphenyl sulfide as the substrate and H2O2 or cumene hydroperoxide as the oxidants. To further improve the closed nature of these complexes with a tetradentate salen ligand, we synthesized and characterized vanadium complexes with tridentate (S)-NOBIN backbone Schiff base ligands with phenanthryl and benz[a]anthryl as the sidearms. After initial catalytic study, we concluded that these catalysts are too open in nature to impose face selection during asymmetric induction. We also synthesized and characterized vanadium and titanium salan complexes. These complexes can adopt β-cis geometry, thereby making the complex “chiral at metal” and they are known for better catalysts in terms of asymmetric induction than their unreduced counterparts. However, these complexes showed better catalytic activity than their unreduced counterparts in sulfoxidation reactions with methylphenyl sulfide as the substrate and H2O2 or cumene hydroperoxide as the oxidants. We also put an effort to synthesize mixed salen complexes with vanadium as the central metal. These complexes have two different sidearms attached to one backbone unit. However, our method did not work well to produce pure mixed salen ligands. The catalysis results for mixed salen vanadium complexes are also comparable to the unreduced vanadyl salen complexes. Lastly, we synthesized and characterized new helical titanium Schiff base complexes with (S)-NOBIN backbone and phenanthryl and benz[a]anthryl sidearms. Single crystal studies showed that these complexes exist in the M helical conformation in the solid state. These complexes showed moderate activity in asymmetric aldol addition reactions between 2-methoxy propene and different aldehydes.
|
12 |
The preparation and use of metal salen complexes derived from cyclobutane diaminePatil, Smita S. January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Christopher J. Levy / The helix is an important chiral motif in nature, there is increasing development in field of helical transition metal complexes and related supramolecular structures. Hence, the goals of this work are to apply the principles of helicity in order to produce metal complexes with predictable molecular shapes and to study their properties as asymmetric catalysts.
Computational studies suggest that the (1R,2R)-cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy barrier between the M and P helical forms. To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical coordination complexes. These ligands were metallated with zinc, iron and manganese salts to produce salen metal complexes which were characterized by NMR analysis, high-resolution mass spectrometry, and IR spectroscopy.
A second ligand type, neutral bis(pyridine-imine) has also been synthesized from (1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine) ligands was conducted using greener method, solvent assisted grinding. These ligands, in-situ with nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions.
The third ligand type studied was chiral acid-functionalized Schiff-base ligands. These were synthesized by the condensation of 3-formyl-5-methyl salicylic acid and (1R,2R)-cyclobutyldiamine. With this type of ligand, there is possibility of producing both mono and dinuclear metal complexes. In our studies, we were only able to synthesize mononuclear complexs. These were tested as catalysts for asymmetric direct Mannich-type reaction, but were found to be ineffective.
|
13 |
Synthesis, reactivity, and coordination chemistry relevant to the copolymerization of CO2 and epoxides by first row transition metal schiff base complexesFrantz, Eric Benjamin 15 May 2009 (has links)
Excepting agricultural based products, which themselves require a great deal of
energy to produce, our supply of natural resources such as minerals, metal ore, fresh
water, coal, oil and natural gas are all limited in supply. The depletion of these
substances is imminent and this knowledge weighs heavily on humankind. The
utilization of CO2 for the production of polycarbonates is one attempt at exploiting a
profoundly abundant and renewable resource. The importance of research in this and
similar fields justifies the detailed study of the chemicals and procedures involved with
this chemistry. This current work concentrates on the fundamental study of transition
metal Schiff base complexes that have shown a great deal of promise in their ability to
catalyze the copolymerization of CO2 and epoxide to form aliphatic polycarbonates.
A new chromium(III) Schiff base complex has been synthesized and evaluated
for its ability to catalyze the formation of polymer. The ligand employed bears an N2O2
coordination sphere identical to the widely utilized chromium(III) and cobalt(III) salen
catalysts. This complex was shown to be active towards the copolymerization of CO2 and cyclohexene oxide. Although the activity was less than that seen with
chromium(III) salen complex, the study demonstrates that new ligand systems are
available beyond salen and deserve further attention.
A class of manganese(III) Schiff base complexes was also synthesized and
evaluated as catalysts. Although crystallographic data has shown that these complexes
are structural analogs to chromium(III) salens, the difference in metal center leads to a
nearly complete elimination of catalytic activity. Such a marked difference has been
taken advantage of by using this very low activity to study the ring-opening of epoxide
in the initial step of the copolymerization both mechanistically and kinetically. It has
also been utilized in an evaluation of the coordination chemistry of the polymerization
process. This has led to some valuable conclusions about the nature and role of the
metal center that previously have not been studied. Manganese(III) salen complexes
were also synthesized and evaluated in an effort to compare these important ligands to
other Schiff bases and confirm the findings mentioned above.
|
14 |
Metal Catalyzed Formation of Aliphatic Polycarbonates Involving Oxetanes and Carbon Dioxide as MonomersMoncada, Adriana I. 2010 May 1900 (has links)
Biodegradable aliphatic polycarbonates are important components of non-toxic
thermoplastic elastomers, which have a variety of medical applications. Industrially,
aliphatic polycarbonates derived from six-membered cyclic carbonates such as
trimethylene carbonate (TMC or 1,3-dioxan-2-one) are produced via ring-opening
polymerization (ROP) processes in the presence of a tin catalyst. It is worth mentioning
that TMC is readily obtained by transesterification of 1,3-propanediol with various
reagents including phosgene and its derivatives. Therefore, it has been of great interest
to investigate greener routes for the production of this important class of polymers.
Toward this goal, the synthesis of aliphatic polycarbonates via the metal catalyzed
alternative coupling of oxetanes and carbon dioxide represents an attractive alternative.
The use of an abundant, inexpensive, non-toxic, and biorenewable resource, carbon
dioxide, makes this method very valuable. Furthermore, in this reaction, the sixmembered
cyclic carbonate byproduct, TMC, can also be ring-opened and transformed
into the same polycarbonate. For over a decade, the Darensbourg research group has successfully utilized metal salen complexes as catalysts for the epoxide/CO2
copolymerization process. Hence, this dissertation focuses on the examination of these
complexes as catalysts for the oxetane/CO2 copolymerization reaction and the further
elucidation of its mechanism.
Chromium(III) salen derivatives in the presence of an azide ion initiator were
determined to be very effective catalysts for the coupling of oxetanes and carbon dioxide
providing polycarbonates with minimal amounts of ether linkages. Kinetic and
mechanistic investigations performed on this process suggested that copolymer
formation proceeded by two routes. These are the direct enchainment of oxetane and
CO2, and the intermediacy of trimethylene carbonate, which was observed as a minor
product of the coupling reaction. Anion initiators which are good leaving groups, e.g.
bromide and iodide, are effective at affording TMC, and hence, more polycarbonate can
be formed by the ROP of preformed trimethylene carbonate. Research efforts at tuning
the selectivity of the oxetane/CO2 coupling process for TMC and/or polycarbonate
produced from the homopolymerization of preformed TMC have been performed using
cobalt(II) salen derivatives along with anion initiators. Lastly, investigations of this
process involving 3-methoxy-methyl-3-methyloxetane will be presented.
|
15 |
Non-covalent interactions and their role in biological and catalytic chemistryKennedy, Matthew R. 12 January 2015 (has links)
The focus of this thesis is the question of how non-covalent
interactions affect chemical systems' electronic and structural properties.
Non-covalent interactions can exhibit a range of binding strengths,
from strong electrostatically-bound salt bridges or multiple hydrogen
bonds to weak dispersion-bound complexes such as rare gas dimers
or the benzene dimer. To determine the interaction energies (IE)
of non-covalent interactions one generally takes the supermolecular
approach as described by the equation
\begin{equation}
E_{IE} = E_{AB} - E_{A} - E_{B},
\end{equation}
where subscripts A and B refer to
two monomers and AB indicates the dimer. This interaction energy is
the difference in energy between two monomers interacting at a single
configuration compared to the completely non-interacting monomers at
infinite separation. In this framework, positive interaction energies are
repulsive or unfavorable while negative interaction energies signify
a favorable interaction. We use prototype systems to understand systems
with complex interactions such as π-π stacking in curved aromatic systems,
three-body dispersion contributions to lattice energies and transition metal catalysts
affect on transition state barrier heights. The current "gold standard" of computational chemistry is coupled-cluster theory with iterative single and double excitation and perturbative triple
excitations [CCSD(T)].\cite{Lee:1995:47} Using CCSD(T) with large basis sets usually yields results that are in good agreement with experimental data.\cite{Shibasaki:2006:4397}
CCSD(T) being
very computational expensive forces us to use methods of a lower overall
quality, but also much more tractable for some interesting problems.
We must use the available CCSD(T) or experimental data available
to benchmark lower quality methods in order to ensure that the low
quality methods are providing and accurate description of the problem
of interest. To investigate the effect of curvature on the nature of π-π interactions, we studied concave-convex dimers of corannulene and coronene in nested configurations. By imposing artificial
curvature/planarity we were able to learn about the fundamental
physics of π-π stacking in curved systems. To investigate these effects, it was necessary to benchmark low level methods
for the interaction of large aromatic hydrocarbons. With the coronene and corannulene dimers being 60 and 72 atoms, respectively, they are outside the limits of tractability for a large number of
computations at the level of CCSD(T). Therefore we must determine the most efficient and accurate method of describing the physics of these systems with a few benchmark computations. Using a few benchmark computations published by Janowski et al. (Ref. \cite{Janowski:2011:155})
we were able to benchmark four functionals (B3LYP, B97, M05-2X and M06-2X) as
well as four dispersion corrections (-D2, -D3, -D3(BJ), and -XDM) and we
found that B3LYP-D3(BJ) performed best. Using B3LYP-D3(BJ) we found that both corannulene and coronene exhibit stronger interaction energies as more curvature is
introduced, except at unnaturally close intermolecular distances or high degrees
of curvature. Using symmetry adapted perturbation theory (SAPT)\cite{Jeziorski:1994:1887, Szalewicz:2012:254}, we were able to determine that this stronger interaction comes from stabilizing dispersion, induction and charge penetration interactions with smaller destabilizing interactions from exchange interactions. For accurate computations on lattice energies one needs to go beyond two-body effects to three-body effects if the cluster expansion is being used. Three-body dispersion is normally a smaller fraction of the lattice
energy of a crystal when compared to three-body induction. We investigated
the three-body contribution using the counterpoise corrected
formula of Hankins \textit{et al.}.\cite{Hankins:1970:4544}
\begin{equation}
\Delta ^{3} E^{ABC}_{ABC} = E^{ABC}_{ABC} - \sum_{i} E^{ABC}_{i} -
\sum_{ij} \Delta ^{2} E^{ABC}_{ij},
\end{equation}
where the superscript ABC represents the trimer basis and the E(subscript i) denotes the energy of each monomer, where {\em i} counts
over the individual molecule of the trimer. The last term is defined as \begin{equation}
\Delta ^{2} E^{ABC}_{ij} = E^{ABC}_{ij} - E^{ABC}_{i} - E^{ABC}_{j},
\end{equation}
where the energies of all dimers and monomers are determined in the
trimer basis. Using these formulae we investigated the three-body
contribution to the lattice energy of
crystalline benzene with CCSD(T). By using CCSD(T) computations we resolved a debate in the literature about the
magnitude of the non-additive three-body dispersion contribution
to the lattice energy of the benzene crystal. Based on CCSD(T)
computations, we report a three-body dispersion contribution of
0.89 kcal mol⁻¹, or 7.2\% of the total lattice energy. This estimate is smaller than many previous computational estimates\cite{Tkatchenko:2012:236402,Grimme:2010:154104,Wen:2011:3733,vonlilienfeld:2010:234109} of the three-body dispersion contribution, which fell
between 0.92 and 1.67 kcal mol⁻¹. The benchmark data we provide confirm that three-body dispersion effects cannot be
neglected in accurate computations of the lattice energy of benzene.
Although this study focused on benzene, three-body dispersion effects
may also contribute substantially to the lattice energy of other
aromatic hydrocarbon materials. Finally, density functional theory (DFT) was applied to the rate-limiting step of the hydrolytic kinetic resolution (HKR) of terminal
epoxides to resolve questions surrounding the mechanism. We find that the catalytic mechanism is cooperative because
the barrier height reduction for the bimetallic reaction is greater than the sum of the barrier height reductions for
the two monometallic reactions.
We were also able to compute barrier heights for multiple counter-ions which react at different rates. Based on
experimental reaction profiles, we saw a good correlation between our barrier heights for chloride, acetate, and tosylate with
the peak reaction rates reported. We also saw that hydroxide, which is inactive experimentally is inactve because when hydroxide is the only counter-ion
present in the system it has a barrier height that is 11-14 kJ mol⁻¹ higher than the other three counter-ions which are extremely
active.
|
16 |
Mechanistic studies of the copolymerization of epoxides with carbon dioxide and ring-opening polymerization of cyclic estersZhou, Zhiping 12 October 2004 (has links)
No description available.
|
17 |
THE APPLICATION OF SPIROLIGOMERS TOWARDS MOLECULAR RECOGNITION AND ORGANOCATALYSISFan, Yanfeng January 2019 (has links)
This thesis presents the development of bis-amino acid-based spiroligomer applications in the areas of molecular recognition and organocatalysis. By taking advantage of the high degree of functionality and chirality of the unique bis-amino acid building blocks, spiroligomer backbones can be synthesized with predefined shapes, functioning as molecular hosts or as enzyme active-site-like pockets. Firstly, we demonstrated that spiroligomers can be designed to act as anion receptors. We designed a collection of spiroligomers that each display two urea groups. The spiroligomer that displayed the two urea groups in a way that they pointed at each other acts as an anion receptor and binds hydrogen pyrophosphate H2PPi anion (H2P2O72−), as demonstrated by an NMR titration experiment. Other spiroligomers that displayed the two ureas demonstrated a variety of behaviors including self-association and gel formation. In later work we explored the use of spiroligomers to develop catalysts. We attempted to design bipyridine/TEMPO-based bifunctional catalysts but they failed to achieve a faster alcohol oxidation rate than the background reaction. We then demonstrated the successful incorporation of metal-salen functional groups into spiroligomers in Chapter 4. Several bis-amino acid-based metal-salen complexes were synthesized and examined as asymmetric catalysts. Although only moderate enantio-selectivity was detected from synthesized Mn-salen catalyzed epoxidation reactions, it provides the first direct evidence that chiral bis-amino acid backbone can act as a chiral pocket that influence substrate selection and the stereochemical outcome of reactions. / Chemistry
|
18 |
Graphene modified Salen ligands for the electrochemical determination of heavy metal ionsNaidoo, Fayyaadh January 2020 (has links)
>Magister Scientiae - MSc / Environmental pollution is a major threat to all life, which needs to be addressed. Heavy metals are well-known environmental pollutants due to their toxicity and, persistence in the environment toxicity for living organisms and having a bioaccumulative nature.
Environmentally, the most common hazardous heavy metals are: Cr, Ni, Cu, Zn, Cd, Pb, Hg, and As. Remediation using conventional physical and chemical methods is uneconomical and generates waste chemicals in large quantities.
This study focuses on the extraction and determination of heavy metals (Nickel, Copper and Cobalt) by chelating Schiff base ligands of the type [O,N,N,O] with these metal ions. Two Schiff base ligands [N,N’-ethylenebis(salicylimine)] (Salen) and ligand [1,3-bis(salicylideneamino)-2-propanol] (Sal-DAP) were synthesized and characterised using FTIR, 1H and 13C NMR spectrometry and GC-MS techniques. Electrochemical detection of heavy metal ions in this work was achieved via ligand-metal complexation via two approaches. The in-situ method in which the metal and ligands were added to the electrochemical cell and stirred to allow complexation to occur and monitored by square wave voltammetry. While the ex-situ approach involved modifying the electrode surface by depositing a thin film of Schiff base on the electrode surface and immersed into a heavy metal solution to allow the complexation. Three modified GCE were used viz. Salen coated GCE, reduced graphene oxide-Salen coated GCE and a nafion-Salen coated GCE. The two approaches used for the electrochemical detection were successful and effective. The ex-situ approach was selected for the modification of the electrode surface since it demonstrated a higher capacity for heavy metal ion extraction.
|
19 |
SILIPOLYSALEN : étude du greffage par polymérisation contrôlée de complexes de salen sur silicium pour une application en catalyse asymétrique hétérogène / SILIPOLYSALEN : grafting by controlled polymerization of salen complexes on silicon for heterogeneous asymmetric catalysis applications .Zidelmal, Nacim 14 March 2018 (has links)
Les complexes métalliques chiraux de type salen sont connus pour la diversité de leur utilisation en catalyse conduisant à la préparation de nombreux synthons énantio-enrichis. Conformément au concept de chimie verte, l'un des principaux objectifs est d'établir une procédure efficace pour la récupération et la réutilisation de ces catalyseurs. Dans ce contexte, l'objectif de ce travail est de fonctionnaliser la surface du silicium par greffage covalent de ces catalyseurs par polymérisation contrôlée notamment la polymérisation radicalaire par transfert d’atome (ATRP) pour leur récupération et leur réutilisation. Ainsi, des copolymères de styrène contenant 5 à 50 mol% d’un comonomère salen dissymétrique ont été synthétisés par ATRP en solution. Le caractère contrôlé des polymérisations n’est obtenu que lorsque l’incorporation du comonomère salen est inférieure ou égale à 10 mol %.Après complexation au cobalt, les polymères correspondants se sont révélés capables de réaliser une activation coopérative efficace, conduisant au produit ciblé avec des rendements et des sélectivités élevés en tant que catalyseurs dans la réaction de dédoublement cinétique hydrolytique de l’épibromohydrine.Nous avons également réalisé la polymérisation du styrène sur la surface de silicium par ATRP après greffage de l’amorceur. Plusieurs méthodes de greffage de l’amorceur ont été utilisées soit d’une manière directe à partir de la surface hydrogénée, soit indirecte à partir d’une surface acide ou ester. Le styrène a été ensuite efficacement polymérisé en masse avec succès de façon contrôlée sur le silicium, avec des épaisseurs de couche comprise entre 9 et 29 nm déterminées par ellipsométrie et microscopie à force atomique / Chiral metal complexes of salen type are known for their efficient catalytic activity leading to the preparation of enantioselective enriched synthons. In accordance with the concept of green chemistry, one of the main challenge is to establish a procedure for the recovery and reuse of these catalysts. In this context, the objective of this work is to functionalize the silicon surface by grafting these catalysts by controlled polymerization especially by Atom Transfer Radical Polymerization (ATRP) to facilitate their recovery and reuse.Thus, styrene copolymers containing 5 to 50 mol % of an disymmetric salen comonomer were synthesized by ATRP in solution. The controlled nature of the polymerizations is obtained only when the incorporation of the salen comonomer is less than or equal to 10%.After complexation with cobalt, these complexes are shown to be capable of effective cooperative activation, leading to the targeted product with high yields and selectivities as catalysts in Hydrolytic Kinetic Resolution (HKR) of epibromohydrin.Constantio Constantini fratre imperatoris, matreque Galla.We also reported the polymerization of styrene on the silicon surface by ATRP after grafting of the initiator. Several methods of initiator grafting have been used either directly from the hydrogenated surface or indirectly from an acid or ester surface. Styrene has been successfully mass polymerized in a controlled manner on silicon with thicknesses of 9-29 nm of the layer obtained by ellipsometry and Atomic Force Microscopy.
|
20 |
Desenvolvimento de um sensor eletroquímico para furosemida baseado em superfície de grafite de lápis modificada com filme polimérico de Ni-Salen e nanopartículas de Ni(OH)2/C / Development of an electrochemical sensor for furosemide based on pencil graphite surface modified with Ni-Salen polymer film and Ni(OH)2/C nanoparticlesMartins, Thiago Serafim 30 July 2018 (has links)
Neste trabalho, um sensor eletroquímico avançado baseado em eletrodo de grafite de lápis modificado via eletropolimerização do monômero de N,N\'-bis(salicilideno)etilenodiaminoníquel(II) na presença de nanopartículas de Ni(OH)2 suportadas em carbono (chamado aqui de poli[Ni(salen)] e Ni(OH)2C) foi desenvolvido e investigado para quantificação de furosemida (FUR) em meio alcalino. O sensor eletroquímico e seus componentes foram extensivamente caracterizados por técnicas físico-químicas, enquanto que o processo de oxidação da furosemida foi investigado por espectroscopia no infravermelho com transformada de Fourier in situ (FTIV in situ). Estes resultados indicam que a oxidação da furosemida nestas condições leva à formação de 2-amino-4-cloro-5-sulfamoilbenzoato e 5-hidroxi-furano-2-carboxilato. A resposta eletroquímica do eletrodo de grafite modificado (EGM) para a determinação de furosemida foi medida por voltametria cíclica (VC). A curva de calibração (mudança de corrente de pico voltamétrico versus concentração de FUR) apresentou uma faixa linear de 2,5 × 10-10 mol L-1 a 2,7 × 10-9 mol L-1 com um limite de detecção calculado tão baixo quanto 1,45 × 10-10 mol L-1 nas condições otimizadas, que é menor do que os valores relatados na literatura. A sensibilidade ultrabaixa obtida com sensor desenvolvido foi atribuída a um efeito sinérgico entre o filme de poli[Ni(salen)] e as nanopartículas de Ni(OH)2/C. / In this work, an advanced electrochemical sensor based on pencil graphite electrode modified via electropolymerization of the N,N\'-bis(salicylidene)ethylenediaminonickel(II) monomer in the presence of carbon supported Ni(OH)2 nanoparticles (here called as poly[Ni(salen)] and Ni(OH)2/C) was developed and investigated for furosemide (FUR) quantification in alkaline medium. The electrochemical sensor and its components were extensively characterized by physico-chemical techniques, while the furosemide oxidation process was investigated by in situ Fourier transform infrared spectroscopy (in situ FTIR). These results indicate that the oxidation of furosemide in these conditions leads to the formation of 2-amino-4-chloro-5-sulfamoylbenzoate and 5-hydroxy-furan-2-carboxylate. The electrochemical response of the modified graphite electrode (MGE) for the determination of furosemide was measured by cyclic voltammetry (CV). The calibration curve (change of voltammetric peak current vs. FUR concentration) presented a linear range from 2.5 × 10-10 mol L-1 to 2.7 × 10-9 mol L-1 with a calculated limit of detection as low as 1.45 × 10-10 mol L-1 under the optimized conditions, which is lower than values reported in the literature. The ultra-low sensitivity obtained with the MGE sensor was attributed to a synergistic effect between the poly[Ni(salen)] film and Ni(OH)2/C nanoparticles.
|
Page generated in 0.0444 seconds