631 |
Exploring sediment dynamics in coastal bays by numerical modelling and remote sensingZhang, Xiaohe 15 February 2021 (has links)
Coastal bays and salt marshes are buffer zones located at the interface between land and ocean, and provide ecologically and commercially important services worldwide. Unfortunately, their location makes them vulnerable and sensitive to sea-level rise (SLR), reduced sediment loads and anthropogenic modifications of the shoreline. Sediment budget and sediment availability are direct metrics for evaluating the resilience of salt marshes and coastal bays to various stressors (e.g. SLR). Salt marshes requires adequate sediment inputs to maintain their elevation with respect to sea level. Understanding sediment trajectories, sediment fluxes and sediment trapping capacities in different geomorphic unit facilitates efficient restorations and coastal management. In this research I used remote sensing, field observations and numerical modelling in the Plum Island Sound in Massachusetts, USA, to explore mechanisms controlling sediment dynamics and their feedbacks with SLR.
The analysis of remote-sensed suspended sediment concentrations (SSC) reveals that a 5-year record (2013-2018) is sufficient to capture a representative range of meteorological and tidal conditions required to determine the main drivers of SSC dynamics in hydrodynamically-complex and small-scale coastal bays. The interplay between river and tidal flows dominated SSC dynamics in this estuary, whereas wind-driven resuspension had a more moderate effect. The SSC was higher during spring because of increased river discharge due to snowmelt. Tidal asymmetry also enhanced sediment resuspension during flood tides, possibly favoring deposition on marsh platforms. Together, water level, water-level rate of change, river discharge and wind speed were able to explain > 60% of the variability in the main channel SSC, thereby facilitating future prediction of SSC from these readily available variables.
To determine the fate of cohesive sediments and spatial variations of trapping capacity in the system, a high-resolution (20 m) numerical model coupled to a vegetation module was developed. The results highlight the importance of the timing between sediment inputs and tidal phase and show that sediment discharged from tidal rivers deposit within the rivers themselves or in adjacent marshes. Most sediment is deposited in shallow tidal flats and channels and is unable to penetrate farther inside the marshes because of the limited water depths and velocities on the marsh platform. Trapping capacity of sediment in different intertidal subdomains decreases logarithmically with the ratio between advection length and the typical length of channels and tidal flats. Moreover, sediment deposition on the marsh decreases exponentially with distance from the channels and marsh edge. This decay rate is a function of settling velocity and the maximum value of water depth and velocity on the marsh platform.
Bed sediment compositions were generated to further explore feedbacks between SLR, sediment dynamics and morphological changes. The results show SLR increases tidal prism and inundation depth, facilitating sediment deposition on the marsh platform. At the same time, SLR enhances ebb-dominated currents and increases sediment resuspension, reducing the sediment-trapping capacity of tidal flats and bays, leading to a negative sediment budget for the entire system. This bimodal distribution of sediment budget trajectories will have a profound impact on the morphology of coastal bays, increasing the difference in elevation between salt marshes and tidal flats and potentially affecting intertidal ecosystems. The results also clearly indicate that landforms lower with respect to the tidal frame are more affected by SLR than salt marshes. Therefore, Salt marshes, shallow bays, tidal flats, and barrier islands are inherently and physically connected systems, and evaluating the effect of SLR on salt marshes should involve all these units.
|
632 |
Atmospheric Water Harvesting by an Anhydrate Salt and Its Release by a Photothermal Process Towards Sustainable Potable Water Production in Arid RegionsAlsaedi, Mossab K. 11 1900 (has links)
Only 2.5% of the water on Earth is fresh water and only less than 1% is accessible to
human consumption. Landlocked and desert communities and communities that are not
wealthy enough to provide clean drinking water via conventional water treatment
technologies are facing severe water shortages and tend to rely on long distance
transportation to supply fresh water for their daily use.
As a lot of the water-scarce
countries have abundant annual solar irradiation and relatively high humidity, this
project proposes a technology that harvests water from ambient air using an anhydrate
salt and releases it for collection using sunlight. This technology is designed to be
potentially deployed in night-day cycles, as the humidity at night is at its peak, and solar
irradiation during the day is also at its peak.
In this work, a mesoporous silica powder
filled with CuCl2 and coated with carbon nanotubes is used. The water capture
performance of this material was investigated with different relative humidity
environments. Furthermore, the powder agglomeration sizes of this material were also
investigated for each relative humidity environment. Water release was investigated
under 1 kW/m2 simulated solar light in an in-lab ~60% relative humidity environment.
The results show that this mesoporous material was able to capture water at 12%
relative humidity conditions, low enough to capture water from the air in the Sahara
Desert.
At relative humidity of 15% and 35%, the material was able to absorb 0.12 and
0.25 kg/kg of water, respectively, within 100 minutes, which indicates its fast water
harvesting kinetics. A fully hydrated sample released 0.26 kg/kg of water in almost half
an hour under 1 kW/m2 simulated sunlight. This project sheds more light on utilizing the
atmosphere as an alternative water source.
|
633 |
Dissecting the genetic architecture of salt tolerance in the wild tomato Solanum pimpinellifoliumMorton, Mitchell 10 1900 (has links)
Salt stress severely constrains plant performance and global agricultural productivity.
5% of arable land, 20% of irrigated areas and 98% of water reserves worldwide are saline.
Improving the salt tolerance of major crop species could help attenuate yield losses and
expand irrigation opportunities and provide in situ relief in areas where poverty, food and
water scarcity are prevalent. Increasing the salt tolerance of crops with high commercial
and nutritional value, such as tomato (Solanum lycopersicum L.), would provide
particularly significant economic and health benefits. However, salt tolerance is a complex
trait with a limited genetic repertoire in domesticated crop varieties, including tomato,
frustrating attempts to breed and engineer tolerant crop varieties. Here, a genome-wide
association study (GWAS) was undertaken, leveraging the rich genetic diversity of the
wild, salt tolerant tomato Solanum pimpinellifolium and the latest phenotyping
technologies to identify traits that contribute to salt tolerance and the genetic basis for
variation in those traits. A panel of 220 S. pimpinellifolium accessions was phenotyped,
focusing on image-based high-throughput phenotyping over time in controlled and field
conditions in young and mature plants. Results reveal substantial natural variation in salt
tolerance over time across many traits. In particular, the use of unmanned aerial vehicle
(UAV)-based remote sensing in the field allowed high-resolution RGB, thermal and
hyperspectral mapping that offers new insights into plant performance in the field, over
time. To empower our GWAS and facilitate the identification of candidate genes, a new
S. pimpinellifolium reference genome was generated, 811Mb in size, N50 of ~76kb,
containing 25,970 annotated genes. Analysis of this reference genome highlighted
potential contributors to salt tolerance, including enrichments in genes with stress
response functions and a high copy number of the salt tolerance-associated gene inositol-
3-phosphate synthase (I3PS). A recently completed full genome re-sequencing of the
panel, along with a newly available pseudomolecule-level assembly of the S.
pimpinellifolium genome with N50 of ~11Mb, will serve to drive a GWAS to identify loci
associated with traits that contribute to salt tolerance. Further research including gene
validation, breeding, genetic modification and gene editing experiments will drive the
development of new salt tolerant tomato cultivars.
|
634 |
Electrodeposition of Titanium Metal from Fluoride–Chloride Mixed Molten Salts Consisting of Single Cations / 単一カチオンで構成されるフッ化物–塩化物混合溶融塩からの金属チタン電析Norikawa, Yutaro 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第22551号 / エネ博第402号 / 新制||エネ||77(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 野平 俊之, 教授 萩原 理加, 教授 佐川 尚 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DGAM
|
635 |
Studies on Biaryl Synthesis via Sigmatropic Rearrangement of Arylsulfonium Species / アリールスルホニウム種のシグマトロピー転位を経るビアリール合成に関する研究)Yanagi, Tomoyuki 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23038号 / 理博第4715号 / 新制||理||1676(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 依光 英樹, 教授 若宮 淳志, 教授 時任 宣博 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
636 |
The Path to Understanding Salt Tolerance: Global Profiling of Genes Using Transcriptomics of the Halophyte <em>Suaeda fruticosa</em>Arce, Joann Diray 01 May 2016 (has links)
Salinity is a major abiotic stress in plants that causes significant reductions in crop yield. The need for improvement of food production has driven research to understand factors underlying plant responses to salt and mechanisms of salt tolerance. The aim of improving tolerance in traditional crops has been initiated but most crops can only tolerate a limited amount of salt in their systems to survive and produce biomass. Studies of naturally occurring high salt-tolerant plants (halophytes) are now being promoted for economic interests such as food, fodder or ecological reasons. Suaeda fruticosa, a member of the family Chenopodiaceae, belongs to a potential model halophyte genus for studying salt tolerance. However, published reports on the identification of genes, expression patterns and mechanisms of salinity tolerance in succulent halophytes are very limited. Next generation RNA-sequencing techniques are now available to help characterize genes involved in salinity response, along with expression patterns and functions of responsive genes. In this study, we have optimized the assembly of the transcriptome of S. fruticosa. We have annotated the genes based on their gene ontology characteristics and analyzed differential expression to identify genes that are up- and down-regulated in the presence of salt and have grouped the genes based on their putative functions. We also have provided evidence for groups of transcription factors that are involved in salt tolerance of this species and have identified those that may affect the regulation of salt tolerance. This work elucidates the characterization of genes involved in salinity tolerance to increase our understanding of the regulation of salt in a succulent halophyte.
|
637 |
Antioxidant Combination of High Phosphatidylserine (PS) Lecithin with Mixed Tocopherol in Soybean Oil-in-Water Emulsion: Effect of pH and SaltAgnihotri, Princy 20 October 2021 (has links)
Lipid oxidation is one of the major challenges faced by the food industry as it contributes to the loss of nutritional quality and loss of flavor in food products. Studies have shown that naturally occurring phospholipids like phosphatidylserine (PS) and phosphatidylethanolamine (PE) can regenerate oxidized tocopherols and help delay the lipid oxidation in bulk oils and oil-in-water emulsions. Since consumers desire simpler and cleaner labels, without chemically synthesized antioxidants, this research is of great interest. The combination of PS and PE with tocopherols has already been studied. However, PS was a better antioxidant in combination with tocopherols in the oil-in-water emulsion system whereas PE was a better antioxidant in combination with tocopherols in bulk oils. But obtaining pure phospholipids is an expensive deal, therefore, this study uses the more economical alternative, high phosphatidylserine (PS) lecithin in combination with mixed tocopherols in soybean oil-in-water system. PS (30 µmol/kg emulsion) along with mixed tocopherols (3 µmol/kg emulsion) were dissolved in oil and emulsions stabilized by Tween20 were prepared. To determine the most effective concentration of mixed tocopherols, 0.5, 1.0, and 3 µmole of tocopherols/kg emulsion were used at pH of 3 and 7. Tocopherol with a concentration of 3 µmole/kg emulsion was found to be the most effective at pH 3. Tocopherols showed an extended lag phase at lower pH. The synergistic activities of authentic PS and high PS lecithin were compared in combination with tocopherol under similar conditions. They both had an almost similar lag phase. This combination was then tested for different pH of 3 and 7 and different salt concentrations of (0.5, 1, and 1.5 wt% of the emulsion) at pH 7 to determine the effects of external factors on the synergistic antioxidant combination. It was observed that the combination had extended antioxidant ability at lower pH of 3 whereas salt had no effect on the combination. The results showed that high PS lecithin forms a synergistic combination with mixed tocopherols to increase the lag phase in oil-in-water emulsions and can be used as a clean label antioxidant for oil-in-water emulsions.
|
638 |
Salt Adaptation for Enhanced Growth and Sucrose Production in CyanobacteriaWolfe, Malory Mae 15 July 2021 (has links)
No description available.
|
639 |
Zásobník pro mletou kamennou sůl / Silo for milled mineral saltVeškrna, Martin January 2015 (has links)
This diploma thesis describes the design of silo for milled mineral salt and. There are described the types of silos and there is also analysis of type choise and silo construction, dimension design and silo strenght calculation. Further there are described active and passive stress state of the material in the silo. The thesis deals the possibility of emptying the vaults and there is describtion of active and passive elements, that condustive to flow of materiál. It also describes the specificity of the material considering the structure of silo.
|
640 |
Solvatation du thorium par les fluorures en milieu sel fondu à haute température : application au procédé d'extraction réductrice pour le concept MSFR / Actinide/lanthanide separation in molten salt media : application to the MSFR fuel reprocessingRodrigues, Davide 04 December 2015 (has links)
Le réacteur à sels fondus rapides (MSFR) est un des six concepts de réacteur nucléaire retenu lors du Forum Génération IV en 2001. La particularité de ce concept est d'utiliser un combustible liquide constitué d'un sel fondu, LiF-ThF₄-UF₄/UF3₃ (77-19-4 mol%) et d'intégrer un procédé de traitement du sel usé. Ce traitement est constitué d'étapes successives de séparation chimiques basées sur les propriétés redox et acido-basiques des éléments produits dans le réacteur par des réactions nucléaires : produits de fission solubles et gazeux, éléments métalliques et actinides mineurs solubles. L'une des étapes majeures du procédé de traitement est une extraction réductrice qui consiste à mettre en contact le sel fondu et un métal liquide, le bismuth, contenant un élément réducteur, le lithium. Cette étape permet notamment de séparer les actinides mineurs des lanthanides. Les actinides mineurs sont réintroduits dans le réacteur nucléaire afin d'y être brûler alors que les lanthanides seront confinés en stockage profond.Le travail réalisé au cours de cette thèse avait deux objectifs : (i) vérifier la faisabilité de l'extraction réductrice des actinides et des lanthanides, étape qui avait été validée au préalable uniquement sur la base de calculs thermodynamiques et (ii) étudier la chimie des sels fluorures fondus (et notamment le sel combustible LiF-ThF₄-UF₄) en développant une méthodologie pour la détermination de données fondamentales telles que les coefficients d'activité dans les milieux fluorures, coefficients qui quantifient les propriétés de solvatation.La première étape pour réaliser expérimentalement une extraction réductrice consiste à préparer une nappe métallique de Bi-Li liquide de composition pré-définie. Une technique d'électrolyse en milieu LiCl-LiF fondu à 550°C a été retenue pour réaliser ces solutions métalliques. Nous avons montré que seul ce milieu fondu pouvait être utilisé pour la fabrication de ces alliages métalliques. Des tests d'extraction ont ensuite été réalisés par contact entre LiF-ThF₄ (dans lequel sont introduits UF₄ et NdF ₃ pour simuler respectivement les actinides et les lanthanides) et Bi-Li à 650°C. Les principaux résultats montrent que l'extraction du néodyme et de l'uranium a été obtenue avec des rendements respectivement de l'ordre de 3% et 15% dans les meilleures conditions. Ces valeurs sont faibles comparées aux calculs thermodynamiques prévisionnels. On explique la faible efficacité de l'extraction par une extraction simultanée du thorium dans la nappe métallique liquide qui forme des composés intermétalliques à l'interface métal/sel et bloque le transfert interphasique. Des méthodes ont été développées pour atteindre des données fondamentales qui font défaut en milieu fluorures fondus, en particulier les propriétés de solvatation. La spéciation de plusieurs cations métalliques par les ions fluorures à haute température a notamment été étudiée et les constantes de complexation calculées par simulation des résultats expérimentaux. Réalisée pour deux lanthanides, le néodyme et le lanthane, deux actinides, le thorium et l'uranium et également pour un métal de transition, le nickel, cette étude permet d'atteindre les coefficients d'activité de ces éléments dans tous les sels fluorures fondus. En particulier, l'étude de la spéciation du thorium a été une étape importante dans la connaissance de la chimie du sel combustible LiF-ThF₄ puisque nous avons pu en déduire le coefficient d'activité de l'ion fluorure dans ce milieu à 650°C.Enfin, l'ensemble de ce travail a conduit à donner une première estimation de la réactivité de chaque élément de la classification périodique (présent dans le réacteur nucléaire après opération) à chaque étape du traitement du sel combustible usé. / The molten salt fast reactor (MSFR) is one of the six nuclear reactor concepts retained during the Forum GEN IV in 2001. The particularity of this concept is to use a liquid fuel consisting of a molten salt, LiF-ThF₄-UF₄ /UF ₃ (77-19-4 mol%) and to have an integrated spent fuel treatment process. This treatment consists of successive chemical separation steps based on redox and acid-base properties of the elements produced in the reactor by nuclear reactions: soluble and gaseous fission products, metals elements and soluble minor actinides. One of the major steps of the treatment method is a reducing extraction which consists to contact the molten salt and a liquid metal, bismuth, containing the reducing element, lithium. This step allows separating the minor actinides and lanthanides. Minor actinides are reintroduced in the nuclear reactor to be burned while the lanthanides are confined in deep storage.The work in this thesis had two objectives: (i) assess the feasibility of reducing extraction of actinides and lanthanides, a step that had previously only been validated on the basis of thermodynamic calculations and (ii) study the chemistry of molten fluoride salts (and especially the fuel salt) by developing a methodology for the determination of fundamental data such as the activity coefficients in fluorides media, coefficients activities which quantify the solvation properties.To experimentally realize a reducing extraction, the first step is to prepare a metal layer of liquid Bi-Li with predefined composition. An electrolysis technique in molten salt LiCl-LiF at 550°C was chosen to achieve these metal solutions. We have shown that only this molten medium could be used for the manufacture of such metal alloys. Extraction tests were then carried out by contact between LiF-ThF₄ (with UF₄ and NdF ₃ are introduced to simulate respectively the actinides and lanthanides) and Bi-Li at 650°C. The main results show that the extraction of neodymium and uranium was obtained with yields of around 3% and 15% respectively in the best conditions. These values are low compared to previous thermodynamic calculations. Low efficiency of the extraction is due to a simultaneous extraction of thorium in the liquid metal phase which forms intermetallic compounds at the metal/salt interphase and blocks the transfer.Methods have been developed to achieve fundamental data that are lacking in molten fluoride medium, in particularly the solvation properties. Speciation of some metallic cations by fluoride ions with high temperature was particularly studied and calculation of complexation constants by simulated experimental results was done. Carried out for two lanthanides, neodymium and lanthanum, two actinides, thorium and uranium, and also for a transition metal, nickel, this study achieves to calculate the activity coefficients of these elements in different fluoride molten salt. The study of the speciation of thorium was an important step to understand the chemistry of the fuel salt LiF-ThF₄. We were able to calculate the activity coefficient of the fluoride ion in this environment at 650°C.Finally, all of this work allows giving a first estimate of the reactivity of each element of the periodic table (present in the nuclear reactor after operation) at each stage of the treatment of the spent fuel salt.
|
Page generated in 0.0825 seconds