• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 17
  • 9
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 19
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

VisualMet : um sistema para visualização e exploração de dados meteorológicos / VisualMet: a system for visualizing and exploring meteorological data

Manssour, Isabel Harb January 1996 (has links)
Os centros operacionais e de pesquisa em previsão numérica do tempo geralmente trabalham com uma grande quantidade de dados complexos multivariados, tendo que interpretá-los num curto espaço de tempo. Técnicas de visualização científica podem ser utilizadas para ajudar a entender o comportamento atmosférico. Este trabalho descreve a arquitetura e as facilidades apresentadas pelo sistema VisualMet, que foi implementado com base em um estudo das tarefas desenvolvidas pelos meteorologistas responsáveis pelo 8º Distrito de Meteorologia, em Porto Alegre. Este centro coleta dados meteorológicos três vezes ao dia, de 32 estações locais, e recebe dados similares do Instituto Nacional de Meteorologia, localizado em Brasília, e do National Meteorological Center, localizado nos Estados Unidos. Tais dados são resultados de observações de variáveis tais como temperatura, pressão, velocidade do vento e tipos de nuvens. As tarefas dos meteorologistas e as classes de dados foram observadas e analisadas para definir as características do sistema. A arquitetura e a implementação do VisualMet seguem, respectivamente, uma abordagem orientada a ferramentas e o paradigma de programação orientada a objetos. Dados obtidos das estações meteorológicas são instancias de uma classe chamada "Entidade". Três outras classes de objetos representando ferramentas que suportam as tarefas dos meteorologistas foram modeladas. Os objetos no sistema são apresentados ao usuário através de duas janelas, "Base de Entidades" e " Base de Ferramentas". A implementação da "Base de Ferramentas" inclui ferramentas de mapeamento (para produzir mapas de contorno, mapas de ícones e gráficos), ferramentas de armazenamento (para guardar e recuperar imagens geradas pelo sistema) e uma ferramenta de consulta (para ler valores de variáveis de estações selecionadas). E dada especial atenção a ferramenta de mapa de contorno, onde foi utilizado o método Multiquádrico para interpolação de dados. O trabalho apresenta ainda um estudo sobre métodos de interpolação de dados esparsos, antes de descrever detalhadamente os resultados obtidos com a ferramenta de mapa de contorno. Estes resultados (imagens) são discutidos e comparados com mapas gerados manualmente por meteorologistas do 8º Distrito de Meteorologia. Possíveis extensões do presente trabalho são também abordadas. / The weather forecast centers deal with a great volume of complex multivariate data, which usually have to be understood within short time. Scientific visualization techniques can be used to support both daily forecasting and meteorological research. This work reports the architecture and facilities of a system, named VisualMet, that was implemented based on a case study of the tasks accomplished by the meteorologists responsible for the 8th Meteorological District, in the South of Brazil. This center collects meteorological data three times a day from 32 local stations and receives similar data from both the National Institute of Meteorology, located in Brasilia, and National Meteorological Center, located in the United States of America. Such data result from observation of variables like temperature, pressure, wind velocity, and type of clouds. The tasks of meteorologists and the classes of application data were observed to define system requirements. The architecture and implementation of Visual- Met follow the tool-oriented approach and object-oriented paradigm, respectively. Data taken from meteorological stations are instances of a class named Entity. Three other classes of tools which support the meteorologists' tasks are modeled. Objects in the system are presented to the user through two windows, "Entities Base" and "Tools Base". Current implementation of the "Tools Base" contains mapping tools (to produce contour maps, icons maps and graphs), recording tools (to save and load images generated by the system) and a query tool (to read variables values of selected stations). The results of applying the multiquadric method to interpolate data for the construction of contour maps are also discussed. Before describing the results obtained with the multiquadric method, this work also presents a study on interpolation methods for scattered data. The results (images) obtained with the contour map tool are discussed and compared with the maps drawn by the meteorologists of the 8th Meteorological District. Possible extensions to this work are also presented.
32

Zmapování rozptýlené zeleně a návrh výsadby ve dvou územích s rozdílnou ochranou přírody a krajiny / Mapping of scattered vegetation and planting proposal in two areas with different nature and landscape protection

SKALOVÁ, Jana January 2015 (has links)
The aim of my thesis is to analyze the scattered vegetation in the two specific areas with different protection of landscape . It was chosen cadastral Zachotín and Škrdlovice, which is in protected landscape area Žďárské Vrchy. Field survey has been detected current state of the scattered vegetation and was made into plotting maps. This work was carried out in an ArcMap 10. Subsequently, both states scattered vegetation evaluated and compared . An integral part of the work is also a proposal planting and additions scattered vegetation in both cadastral areas .
33

VisualMet : um sistema para visualização e exploração de dados meteorológicos / VisualMet: a system for visualizing and exploring meteorological data

Manssour, Isabel Harb January 1996 (has links)
Os centros operacionais e de pesquisa em previsão numérica do tempo geralmente trabalham com uma grande quantidade de dados complexos multivariados, tendo que interpretá-los num curto espaço de tempo. Técnicas de visualização científica podem ser utilizadas para ajudar a entender o comportamento atmosférico. Este trabalho descreve a arquitetura e as facilidades apresentadas pelo sistema VisualMet, que foi implementado com base em um estudo das tarefas desenvolvidas pelos meteorologistas responsáveis pelo 8º Distrito de Meteorologia, em Porto Alegre. Este centro coleta dados meteorológicos três vezes ao dia, de 32 estações locais, e recebe dados similares do Instituto Nacional de Meteorologia, localizado em Brasília, e do National Meteorological Center, localizado nos Estados Unidos. Tais dados são resultados de observações de variáveis tais como temperatura, pressão, velocidade do vento e tipos de nuvens. As tarefas dos meteorologistas e as classes de dados foram observadas e analisadas para definir as características do sistema. A arquitetura e a implementação do VisualMet seguem, respectivamente, uma abordagem orientada a ferramentas e o paradigma de programação orientada a objetos. Dados obtidos das estações meteorológicas são instancias de uma classe chamada "Entidade". Três outras classes de objetos representando ferramentas que suportam as tarefas dos meteorologistas foram modeladas. Os objetos no sistema são apresentados ao usuário através de duas janelas, "Base de Entidades" e " Base de Ferramentas". A implementação da "Base de Ferramentas" inclui ferramentas de mapeamento (para produzir mapas de contorno, mapas de ícones e gráficos), ferramentas de armazenamento (para guardar e recuperar imagens geradas pelo sistema) e uma ferramenta de consulta (para ler valores de variáveis de estações selecionadas). E dada especial atenção a ferramenta de mapa de contorno, onde foi utilizado o método Multiquádrico para interpolação de dados. O trabalho apresenta ainda um estudo sobre métodos de interpolação de dados esparsos, antes de descrever detalhadamente os resultados obtidos com a ferramenta de mapa de contorno. Estes resultados (imagens) são discutidos e comparados com mapas gerados manualmente por meteorologistas do 8º Distrito de Meteorologia. Possíveis extensões do presente trabalho são também abordadas. / The weather forecast centers deal with a great volume of complex multivariate data, which usually have to be understood within short time. Scientific visualization techniques can be used to support both daily forecasting and meteorological research. This work reports the architecture and facilities of a system, named VisualMet, that was implemented based on a case study of the tasks accomplished by the meteorologists responsible for the 8th Meteorological District, in the South of Brazil. This center collects meteorological data three times a day from 32 local stations and receives similar data from both the National Institute of Meteorology, located in Brasilia, and National Meteorological Center, located in the United States of America. Such data result from observation of variables like temperature, pressure, wind velocity, and type of clouds. The tasks of meteorologists and the classes of application data were observed to define system requirements. The architecture and implementation of Visual- Met follow the tool-oriented approach and object-oriented paradigm, respectively. Data taken from meteorological stations are instances of a class named Entity. Three other classes of tools which support the meteorologists' tasks are modeled. Objects in the system are presented to the user through two windows, "Entities Base" and "Tools Base". Current implementation of the "Tools Base" contains mapping tools (to produce contour maps, icons maps and graphs), recording tools (to save and load images generated by the system) and a query tool (to read variables values of selected stations). The results of applying the multiquadric method to interpolate data for the construction of contour maps are also discussed. Before describing the results obtained with the multiquadric method, this work also presents a study on interpolation methods for scattered data. The results (images) obtained with the contour map tool are discussed and compared with the maps drawn by the meteorologists of the 8th Meteorological District. Possible extensions to this work are also presented.
34

Radiation exposure to personnel during CT procedures / Strålningsexponering för personal vid CT-undersökningar

Berg, Henrik January 2018 (has links)
During X-ray examinations a large part of the radiation is scattered from the patient, contributing to larger radiation doses to medical staff operating inside the examination room. Ionizing radiation contributes to the risk of developing cancer and hereditary diseases but also to the risk of developing cataract.   The aim of this thesis was to investigate the radiation environment and construct three-dimensional maps of the dose distribution, in a Computed Tomography (CT) room during examinations.    Air kerma was measured with real time dosimeters while irradiating an anthropomorphic phantom, using the X-ray tube voltages 100, 120 and 140 kV. The effective dose received by protected and unprotected medical staff inside the CT room during radiation exposure was estimated by using spectra from scattered X-ray radiation, a simulation of X-ray spectra and the dose evaluation program PCXMC. The equivalent dose to the eye lens was estimated by using spectra from scattered X-ray radiation and tabulated conversion factors from air kerma to the personal dose equivalent at 0.07 mm depth, Hp(0.07). From the estimated values of the effective dose and equivalent eye lens dose received by medical staff inside the room, three-dimensional dose distribution maps were constructed. The shielding effectiveness of a lead apron regularly used in the room was examined using tube voltages of 100, 120 and 140 kV.   The radiation dose distributions have a maximum closest to the irradiated phantom for most heights except at eye level where the maximum is shifted outwards along the patient table due to strong shielding by the gantry at eye level. The strong shielding of the gantry is noticed for all energy levels and at all heights but is exceptionally noticeable at eye level. The shielding of the patient table is strongest for the lower heights but is also noticeable at eye level which may seem surprising since there were no objects between the phantom and that point. The dose distribution along directions with minimal shielding seems to follow the inverse square law well. The lead apron is effective but its efficiency decreases for higher photon energies which is expected.   From information about the frequency and durations of CT-guided procedures, the estimated annual effective dose is 1.6-2.3 mSv for protected and 14.3-19.8 mSv for unprotected personnel at the operator position. The estimated annual equivalent eye lens dose is 4.7-7.8 mSv at the operator position. All annual doses at the operator position are below the annual threshold values of 20 mSv set by the ICRP.
35

Swapping Edges of Arbitrary Triangulations to Achieve the Optimal Order of Approximation

Chui, Charles K., Hong, Dong 01 January 1997 (has links)
In the representation of scattered data by smooth pp (:= piecewise polynomial) functions, perhaps the most important problem is to find an optimal triangulation of the given sample sites (called vertices). Of course, the notion of optimality depends on the desirable properties in the approximation or modeling problems. In this paper, we are concerned with optimal approximation order with respect to the given order r of smoothness and degree k of the polynomial pieces of the smooth pp functions. We will only consider C1 pp approximation with r = 1 and k = 4. The main result in this paper is an efficient method for triangulating any finitely many arbitrarily scattered sample sites, such that these sample sites are the only vertices of the triangulation, and that for any discrete data given at these sample sites, there is a C1 piecewise quartic polynomial on this triangulation that interpolates the given data with the fifth order of approximation.
36

Measuring magnetic fields in galaxies

Montgomery, Jordan Daniel 03 August 2018 (has links)
The magnetic (B) field in the disk of a galaxy may play an important role in the dynamics and evolution of the interstellar medium (ISM). The process by which the interstellar B-field is generated and maintained is not well understood, but the general expectation is that the generated B-field will be toroidal (parallel to the disk of the galaxy). The large-scale B-field threading the cold ISM of external galaxies can be probed via optical and near-infrared (NIR) polarimetric observations. However, scattered light can introduce false-positive B-field detections into these observations and is a source of contamination. This dissertation sets a context for observations of the Milky Way B-field by assessing the degree to which scattered light affects NIR polarimetry and reporting measurements of the B-fields in the disks of several external galaxies. The polarization properties of scattered light were investigated in order to better understand the degree to which scattered light may be a source of contamination in studies of the cold ISM B-field of external galaxies. The optical and NIR polarization of three, nearby, reflection nebulae was observed, and the wavelength dependence of the polarization percentage was measured. This wavelength dependence was found to be related to the characteristics of the scattering dust grain population with the general conclusion that the total amount of polarized, scattered light decreases with increasing wavelength. This analysis was repeated for the scattering-dominated galaxy M82 to test if similar results obtained for galaxies outside the Milky Way. Observations of this object indicate that the total amount of contamination from scattered light in this object is also less at NIR wavelengths than at optical wavelengths, and they confirm that B-field generated polarization can be detected in external galaxies. A sample of edge-on galaxies was observed for NIR polarization to measure the cold ISM B-field there. These observations indicate the likely presence of non-toroidal B-fields, localized, coherent B-field structures, and spiral disk structure detectable via NIR polarimetry. A comparison of the B-fields threading the cold and hot components of the ISM suggests that these B-fields may be dynamically distinct under certain conditions.
37

Možnosti využití vláknobetonů v ocelobetonových spřažených konstrukcích / Possibility of using of fibre-concrete at composite steel-concrete structures

Pozdíšek, Jan January 2013 (has links)
The aim of the offered thesis is an analysis of usage of uncommon concrete matrix and its contribution to steel-concrete composites structures. It especially refers to the area of internal supports, where usually acts negative bending moments. These statical systems are very often used for bridge structures, or even for building constructions. Nowdays, the static infuence of concrete at the area of negative moment is neglected. Only the steel part of cross section and steel reinforcement are included to the static action. This work is focused on the usage of tensile strength of uncommon concrete. The improvement of tensile strength of cement matrix is due to glass fiber reinforcement acting as scattered reinforcing. The introduction is focused on common approach of design of the structures mentioned above. Next, there is a part which describes possibilites of using fibre reinforcing until nowdays.
38

GPU Based Scattered Data Modeling

Vinjarapu, Saranya S. 16 May 2012 (has links)
No description available.
39

Real-Time Visualizations of Ocean Data Collected by the NORUS Glider

Medina, Daniel M 01 June 2010 (has links) (PDF)
Scientific visualization computer applications generate visual representations of large and complex sets of science data. These types of applications allow scientists to gain greater knowledge and insight into their data. For example, the visualization of environmental data is of particular interest to biologists when trying to understand how complex variables interact. Modern robotics and sensors have expanded the ability to collect environmental data, thus, the size and variety of these data-sets have likewise grown. Oftentimes, the collected data are deposited into files and databases where they sit in their separate and unique formats. Without easy to use visualization tools, it is difficult to understand and interpret the information within these data-sets. NORUS, the North America-Norway educational program, has a scientific focus on how climate-induced changes impact the living resources and ecosystems in the Arctic. In order to obtain the necessary science data, the NORUS program utilizes the Slocum Glider, a form of Autonomous Underwater Vehicle (AUV). This thesis aims to create a compelling, efficient, and easy to use interactive system for visualizing large sets of science data collected by the Slocum Glider. This goal is obtained through the implementation of various methods taken from scientific visualization, real time rendering, and scattered data interpolation. Methods include visualizations of the surrounding terrain, the ability to map various science data to glyphs, control over color mapping, scattered data interpolation and interactive camera control.
40

Neural Networks Satisfying Stone-weiestrass Theorem And Approximating

Thakkar, Pinal 01 January 2004 (has links)
Neural networks are an attempt to build computer networks called artificial neurons, which imitate the activities of the human brain. Its origin dates back to 1943 when neurophysiologist Warren Me Cello and logician Walter Pits produced the first artificial neuron. Since then there has been tremendous development of neural networks and their applications to pattern and optical character recognition, speech processing, time series prediction, image processing and scattered data approximation. Since it has been shown that neural nets can approximate all but pathological functions, Neil Cotter considered neural network architecture based on Stone-Weierstrass Theorem. Using exponential functions, polynomials, rational functions and Boolean functions one can follow the method given by Cotter to obtain neural networks, which can approximate bounded measurable functions. Another problem of current research in computer graphics is to construct curves and surfaces from scattered spatial points by using B-Splines and NURBS or Bezier surfaces. Hoffman and Varady used Kohonen neural networks to construct appropriate grids. This thesis is concerned with two types of neural networks viz. those which satisfy the conditions of the Stone-Weierstrass theorem and Kohonen neural networks. We have used self-organizing maps for scattered data approximation. Neural network Tool Box from MATLAB is used to develop the required grids for approximating scattered data in one and two dimensions.

Page generated in 0.0629 seconds