11 |
Determinação do teor de NaCl, Glicose e KCI em medicamentos injetáveis por fotometria usando exploração do efeito Schlieren em Sistemas FIA e PLS1 / Determination of NaCl, KCl and Glucose Content in Injectable Pharmaceuticals by Photometry Exploring the Schlieren Effect in FIA Systems and PLS1Diniz, Paulo Henrique Gonçalves Dias 01 October 2010 (has links)
Made available in DSpace on 2015-05-14T13:21:52Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2728710 bytes, checksum: 6517b3a8e30d4a561eb90e4be9c69916 (MD5)
Previous issue date: 2010-10-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This study evaluated using the Schlieren effect in FIA systems as a
new strategy to determine the amounts of sodium chloride, potassium
chloride and glucose, each respectively in intravenous drugs. The
proposed methodology was based on the difference between the refractive
indices of sample zones and the carrier stream. With this perspective,
photometric detection was used based on an LED and a phototransistor to
investigate the different analytical profiles related to the Schlieren effect
in low flow rate conditions. Adjustment studies of the parameters and flow
settings (which were most suitable to exploit Schlieren profiles), were
performed. The proposed methodology generates a large amount of
chemical information and therefore requires the use of chemometric tools.
Data evaluation was performed with the application of a partial least
squares regression (PLS1), employing the standard solutions of each
analyte to construct and validate the models. The models were then used
to predict the content of each analyte in their real samples. The results
demonstrated the predictive ability of the constructed PLS1 models, and
the predicted concentration values were in agreement with the reference
values, with 95% of confidence. The main advantages of using the
Schlieren effect in the chemical analysis is that no reagent is employed,
low volumes of samples are used and no expensive radiation detectors are
used. / Neste trabalho foi avaliada a exploração do efeito Schlieren em
sistemas FIA para a implementação de uma nova estratégia para
determinar o teor de cloreto de sódio, cloreto de potássio e glicose em
amostras de soro fisiológico, KCl injetável e soro glicosado,
respectivamente. A metodologia proposta se baseia na diferença entre os
índices de refração das zonas da amostra e do fluido carregador. Nesta
perspectiva, foi empregada detecção fotométrica baseada em LED e
fototransistor para investigar diferentes perfis analíticos associados ao
efeito Schlieren em condições de baixa vazão. Estudos para ajuste dos
parâmetros e configurações de fluxo mais adequados nos quais os perfis
Schlieren podem ser explorados foram realizados. A metodologia proposta
gera uma grande quantidade de informações químicas e, por isso, requer
a utilização de ferramentas quimiométricas. A avaliação dos resultados foi
realizada com a aplicação da regressão por mínimos quadrados parciais
(PLS1), a qual empregou as soluções padrão de cada analito para
construção e validação dos modelos. Em seguida, os modelos construídos
foram utilizados para a previsão do teor de cada analito em suas
respectivas amostras reais. Os resultados obtidos demonstraram a boa
capacidade preditiva dos modelos PLS1 construídos, pois os valores das
concentrações previstos pelos modelos foram concordantes com os
valores de referência, no nível de 95% de confiança. As maiores
vantagens da exploração do efeito Schlieren na análise química são que
nenhum reagente é empregado, que utiliza baixo volume de amostras e
que não emprega caros detectores de radiação.
|
12 |
An image-based analysis of stratified natural gas combustion in a constant volume bombMezo, Andrew 11 1900 (has links)
Current stoichiometric spark-ignited engine technologies require costly catalytic converters for reductions in tailpipe emissions. Load control is achieved by using a throttle, which is a leading contributor to reductions in efficiency. Spark-ignited lean burn natural gas engines have been
proven to be more efficient and emit fewer pollutants than their stoichiometric counterparts. Load reduction in these engines can be achieved by regulating the air/fuel ratio of the intake charge thereby reducing the efficiency penalties inherent to throttling.
Partially stratified charge (PSC) can provide further reductions in emissions and improvements in efficiency by extending the lean limit of operation. PSC is achieved by the ignition of a small quantity of natural gas in the vicinity of the spark plug. This creates an easily ignitable mixture at the spark plug electrodes, thereby providing a high energy ignition source for the ultra-lean bulk
charge.
Stratified charge engine operation using direct injection (DI) has been proposed as a method of bridging the throttleless load reduction gap between idle and ultra-lean conditions. A previous study was conducted to determine if PSC can provide a high-energy ignition source in a direct
injected stratified charge engine. Difficulties with igniting the PSC injections in an air-only bulk
charge were encountered.
This study focuses on a fundamental Schlieren image-based analysis of PSC combustion. Natural gas was injected through a modified spark plug located in an optically accessible combustion
bomb. The relationships between PSC injection timing, fuel supply pressure and spark timing were investigated. Spark timing is defined as the duration between commanded start of injection and the time of spark. As the fuel supply pressure was increased, the minimum spark timing that lead to successful combustion also increased. The largest spark timing window that led to successful combustion was determined to be 80 ms wide at an injection fuel supply pressure of
300 psi. The amount of unburned natural gas increased with increasing spark timing.
A cold flow study of the PSC injection system was also conducted. The PSC injection solenoid was found to have a consistent average injection delay of 1.95 ms. The slope of the linear response region of observed injection duration to commanded injection duration was 8.4. Due to
plenum effects, the average observed injection duration of the entire PSC system was an order of magnitude longer than the commanded injection duration and was found to vary significantly with fuel supply pressure.
|
13 |
Study of two-dimensional shock tube flows by following particle trajectories using a multiply pulsed laser schlieren systemWalker, David Keith 20 March 2014 (has links)
A system for recording the trajectories of non-planar shocks and particle tracers within a shock tube flow has been developed. The optics consists of a double-pass schlieren system with a multiply pulsed ruby laser as light source. The laser is synchronized with a high speed framing camera. A grid of ammonium chloride tracers is injected into the flow field, and the motion of the tracers behind the Mach reflection of intermediate strength shocks has been recorded. Analysis of the trajectories has yielded the space and time variation of the physical properties within the flow field. / Graduate / 0605
|
14 |
An image-based analysis of stratified natural gas combustion in a constant volume bombMezo, Andrew 11 1900 (has links)
Current stoichiometric spark-ignited engine technologies require costly catalytic converters for reductions in tailpipe emissions. Load control is achieved by using a throttle, which is a leading contributor to reductions in efficiency. Spark-ignited lean burn natural gas engines have been
proven to be more efficient and emit fewer pollutants than their stoichiometric counterparts. Load reduction in these engines can be achieved by regulating the air/fuel ratio of the intake charge thereby reducing the efficiency penalties inherent to throttling.
Partially stratified charge (PSC) can provide further reductions in emissions and improvements in efficiency by extending the lean limit of operation. PSC is achieved by the ignition of a small quantity of natural gas in the vicinity of the spark plug. This creates an easily ignitable mixture at the spark plug electrodes, thereby providing a high energy ignition source for the ultra-lean bulk
charge.
Stratified charge engine operation using direct injection (DI) has been proposed as a method of bridging the throttleless load reduction gap between idle and ultra-lean conditions. A previous study was conducted to determine if PSC can provide a high-energy ignition source in a direct
injected stratified charge engine. Difficulties with igniting the PSC injections in an air-only bulk
charge were encountered.
This study focuses on a fundamental Schlieren image-based analysis of PSC combustion. Natural gas was injected through a modified spark plug located in an optically accessible combustion
bomb. The relationships between PSC injection timing, fuel supply pressure and spark timing were investigated. Spark timing is defined as the duration between commanded start of injection and the time of spark. As the fuel supply pressure was increased, the minimum spark timing that lead to successful combustion also increased. The largest spark timing window that led to successful combustion was determined to be 80 ms wide at an injection fuel supply pressure of
300 psi. The amount of unburned natural gas increased with increasing spark timing.
A cold flow study of the PSC injection system was also conducted. The PSC injection solenoid was found to have a consistent average injection delay of 1.95 ms. The slope of the linear response region of observed injection duration to commanded injection duration was 8.4. Due to
plenum effects, the average observed injection duration of the entire PSC system was an order of magnitude longer than the commanded injection duration and was found to vary significantly with fuel supply pressure.
|
15 |
Reconstruction de champs instantanés de masse volumique par BOS 3D. Applications à l’étude d’écoulements complexes en grande soufflerie / Instantaneous density fields reconstruction by 3DBOS, application to complex flows in large wind tunnelNicolas, François 07 March 2017 (has links)
Ces travaux de thèse s’inscrivent dans le cadre du développement d’outils métrologiques avancés pour la mécanique des fluides, et en particulier pour les souffleries. La Background Oriented Schlieren (BOS) 3D, développée à l’ONERA, est une technique qui exploite la déviation des rayons lumineux par un milieu non homogène pour mesurer la masse volumique. Elle consiste à comparer l’image de référence d’un fond texturé avec l’image de ce même fond en présence d’un écoulement. La corrélation entre ces deux images permet de calculer la déviation des rayons lumineux. En réalisant une acquisition simultanée à partir de différents points de vue, il est possible de reconstruire le champ de masse volumique associé, par résolution d’un problème inverse. Afin de poursuivre le développement de la technique, nous avons tout d’abord développé une chaîne de traitement plus systématique puis amélioré la robustesse de notre algorithme de reconstruction. Après avoir réalisé une validation sur des données de synthèse, nous avons mise en œuvre notre méthode sur un banc d’essais comportant 12 caméras. Par la suite, la technique a été déployée pour la première fois en soufflerie sur un jet chaud subsonique. Lors de cette campagne, elle a été validée par comparaison avec des mesures de température. Des acquisitions couplées BOS 3D et stéréo PIV ont également été effectuées. Une démonstration à l’échelle d’une soufflerie industrielle a ensuite été réalisée dans la soufflerie S1MAde l’ONERA. Les problématiques rencontrées sur les écoulements compressibles lors de ces essais ont ensuite conduit à étudier de manière plus approfondie les écoulements présentant de forts gradients d’indice optique. Un banc de mesure BOS 3D a été conçu en laboratoire afin d’optimiser la mesure d’un jet sous-détendu. Sur cette configuration, de très bon accords ont été obtenus avec la littérature ainsi qu’avec une simulation DES. A travers cette étude, nous avons étendu le domaine d’application de la BOS 3D aux écoulements compressibles et démontré son utilisation en soufflerie. La qualité des résultats obtenus démontre le potentiel offert par la technique pour l’analyse physique des écoulements. / This PhD work is part of the development of advanced metrological tools for fluid dynamics, especially for wind tunnel applications. 3D Background Oriented Schlieren (BOS), which has been developed at ONERA, is a line-of-sight technique which takes advantage of light rays deviation through an inhomogenous index media to measure density. It consisted in comparing a reference image of a textured background with the image of the background with the flow in presence. Image correlation can then be used to compute light rays deviations. Performing such acquisition from multiple view points, allows to reconstruct the corresponding density field, by solving an inverse problem. In order to pursue the technique development, we first elaborate a systematic processing chain and improved the robustness of the reconstruction algorithm. After validating our method on synthetic data, we applied it on a 3DBOS bench equipped with 12 cameras. Thereafter, the technique has been set up for the first time in a wind tunnel environment, on a subsonic hot jet configuration. During this test campaign, the technique has been validated via thermocouples measurements.Moreover, 3DBOS and stereo-PIV coupled acquisitions have been performed. Thereafter, a demonstration in industrial wind tunnel has been performed in ONERA S1MA facility. Compressible flows issues encountered during those tests lead us to finer analysis high density gradient flows. A 3DBOS test bench has been built in laboratory in order to optimize underexpanded jet measurements. On this specific configuration, very good agreements have bee obtained in comparison with literature and with a DES simulation. This study has allowed the extension of 3DBOS application domain to compressible flows and it has demonstrated its use in a wind tunnel environment. The quality of the results highlights the technique potential for flows physical investigation.
|
16 |
An image-based analysis of stratified natural gas combustion in a constant volume bombMezo, Andrew 11 1900 (has links)
Current stoichiometric spark-ignited engine technologies require costly catalytic converters for reductions in tailpipe emissions. Load control is achieved by using a throttle, which is a leading contributor to reductions in efficiency. Spark-ignited lean burn natural gas engines have been
proven to be more efficient and emit fewer pollutants than their stoichiometric counterparts. Load reduction in these engines can be achieved by regulating the air/fuel ratio of the intake charge thereby reducing the efficiency penalties inherent to throttling.
Partially stratified charge (PSC) can provide further reductions in emissions and improvements in efficiency by extending the lean limit of operation. PSC is achieved by the ignition of a small quantity of natural gas in the vicinity of the spark plug. This creates an easily ignitable mixture at the spark plug electrodes, thereby providing a high energy ignition source for the ultra-lean bulk
charge.
Stratified charge engine operation using direct injection (DI) has been proposed as a method of bridging the throttleless load reduction gap between idle and ultra-lean conditions. A previous study was conducted to determine if PSC can provide a high-energy ignition source in a direct
injected stratified charge engine. Difficulties with igniting the PSC injections in an air-only bulk
charge were encountered.
This study focuses on a fundamental Schlieren image-based analysis of PSC combustion. Natural gas was injected through a modified spark plug located in an optically accessible combustion
bomb. The relationships between PSC injection timing, fuel supply pressure and spark timing were investigated. Spark timing is defined as the duration between commanded start of injection and the time of spark. As the fuel supply pressure was increased, the minimum spark timing that lead to successful combustion also increased. The largest spark timing window that led to successful combustion was determined to be 80 ms wide at an injection fuel supply pressure of
300 psi. The amount of unburned natural gas increased with increasing spark timing.
A cold flow study of the PSC injection system was also conducted. The PSC injection solenoid was found to have a consistent average injection delay of 1.95 ms. The slope of the linear response region of observed injection duration to commanded injection duration was 8.4. Due to
plenum effects, the average observed injection duration of the entire PSC system was an order of magnitude longer than the commanded injection duration and was found to vary significantly with fuel supply pressure. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate
|
17 |
Vliv ochranné atmosféry na vlastnosti svaru při kondukčním laserovém svařování plechů z konstrukční uhlíkové oceli / Influence of shielding gas on weld properties of conductive laser welding of sheet from carbon steelKotrík, Marcel January 2019 (has links)
In the thesis are analysed influences of three shield gases, based on literary pursuit. Compared was influence of the gas consisting of pure Ar, mixture Ar with 3vol.% CO2 and the mixture Ar with 18vol.% CO2 on mechanical properties of conduction laser welded blunt welds made from structural steel DC01 and S235JR with thickness 3mm and 2mm. Compared were strength properties of the welds in tension, weld hardness and hardness of the heat affected area under the low stress. Further was observed and compared stream of the gases during welding process and its influences on the appearance of the trial welds. On the metallographical cuts of the welds were evaluated mistakes and dimensions of the welds.
|
18 |
Hot jet ignition delay characterization of methane and hydrogen at elevated temperaturesKojok, Ali Tarraf 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This study contributes to a better understanding of ignition by hot combustion gases which finds application in internal combustion chambers with pre-chamber ignition as well as in wave rotor engine applications. The experimental apparatus consists of two combustion chambers: a pre chamber that generates the transient hot jet of gas and a main chamber which contains the main fuel air blend under study. Variables considered are three fuel mixtures (Hydrogen, Methane, 50\% Hydrogen-Methane), initial pressure in the pre-chamber ranging from 1 to 2 atm, equivalence ratio of the fuel air mixture in the main combustion chamber ranging from 0.4 to 1.5, and initial temperature of the main combustion chamber mixture ranging from 297 K to 500 K. Experimental data makes use of 4 pressure sensors with a recorded sampling rate up to 300 kHz, as well as high speed Schlieren imaging with a recorded frame rate up to 20,833 frame per seconds. Results shows an overall increase in ignition delay with increasing equivalence ratio. High temperature of the main chamber blend was found not to affect hot jet ignition delay considerably. Physical mixing effects, and density of the main chamber mixture have a greater effect on hot jet ignition delay.
|
19 |
Facility and Methodologies for Evaluation of Hydrogen-Air Mixer PerformanceNorberg, Adam D. 19 October 2006 (has links)
Increased efficiency and reduced emissions from gas turbine (GT) engines are of consistently growing concern for the current gas turbine community and for the political environment. GT engines commonly produce undesirable emissions such as Carbon Monoxide (CO), Carbon Dioxide (CO₂), Nitric Oxides (NO<sub>x</sub>), and Unburned Hydrocarbons (UHC), which all pose various threats to the environment. Lean premixed combustion of hydrogen provides a potential solution to these concerns. A key component of successful lean hydrogen combustion is the fuel-air mixer.
A facility and methodology for the evaluation of such a hydrogen-air mixer is developed and discussed in this thesis. The facility developed utilizes three experimental techniques: Mie scattering flow visualization, schlieren flow visualization, and Laser Doppler Velocimetry (LDV) to characterize and evaluate mixer performance. Results from the two flow visualization experiments illustrate the effectiveness of the established facility. The results from the Mie scattering experiment are post processed and overlaid on CFD predictions of mixer performance and many similarities are found. Capability of the LDV to measure two components of mean velocity is also demonstrated. / Master of Science
|
20 |
Estudo experimental de jatos evaporativos. / Experimental study of evaporating jets.Vieira, Marcelo Mendes 17 December 1999 (has links)
Foi construído um arranjo experimental para estudar o comportamento dos jatos evaporativos. Um injetor foi projetado para controlar e manter constantes a pressão e temperatura de reservatório durante a injeção. Um bocal cônico convergente de seção reta com diâmetro de saída de 0,30 mm e ângulo entre sua geratriz e seu eixo simetria igual à 10º forma o elemento principal do injetor. O jato é descarregado em uma câmara de baixa pressão de dimensões suficientemente grandes para manter a pressão constante durante o curto período de ensaio, igual à 1 s. Quando injetado, o líquido sofre uma repentina queda de pressão ocasionando sua evaporação. Os fluidos utilizados são os combustíveis querosene e óleo diesel, e a substância n-dodecano, os quais se caracterizam pela possibilidade de uma evaporação completa, de forma adiabática. Utilizou-se o método \"schlieren\" para a visualização do escoamento. A análise dos jatos é feita de forma qualitativa através dos registros fotográficos. Foram observados os seguintes tipos de jato: (1) contínuo, (2) pulverizante e (3) evaporação na superfície. O primeiro jato não implica em imediata mudança de fase tornando o jato de líquido emergente intacto. Com o aumento da temperatura de injeção, existe o espalhamento e a evaporação do jato, formando o segundo tipo de jato, onde é possível visualizar o campo do gradiente de densidade do escoamento e a formação de ondas de evaporação e de choque que pode ocorrer a uma distância proporcional a vários diâmetros à jusante. Em jatos com evaporação completa, foram constadas a formação de ondas de choque tanto de formas elipsóide como de esferóide para elevadas temperaturas. As fotografias digitais são submetidas à filtragem e processamento matemático para melhor destacar tais fenômenos do escoamento. / An experimental apparatus has been built to study the behaviour of flashing jets. An injector was designed to control and maintain the jet pressure and temperature at constant values during the injection process. A conical convergent nozzle whose main dimensions are 0,30 mm of exit diameter, 8 mm long, and a convergence half-angle of 10º is the central component of the injection system. The jet is discharged into a low-pressure chamber large enough to keep the reservoir pressure constant during the short test period of about 1 s. As the testing liquid expands in the nozzle it undergoes a sudden pressure drop causing its evaporation. The fluids are usual fuels, such as kerosene and diesel oil, and the substance ndodecane, which are distinguishable by the possibility of a complete evaporation in an isoentropic expansion process. The photographic method \"schlieren\" is used for flow visualisation. A qualitative analysis is made of the photographic documentation of the images obtained using a CCD camera. The images can be grouped into three categories of jets: (1) continuous, (2) shattering, and (3) with surface evaporation. The first regime has an undisturbed a liquid column, which remains more or less intact during the injection process. In the second type, the existing liquid jet is shattered by vapour nucleation and, in some cases, shock waves are clearly visible. It happens at higher temperature than the preceding evaporation mode. Finally, in special situations, the jet undergoes an evaporation at its surface and the two-phase mixture expands at a high speed followed by a shock wave before the mixture attains the pressure reservoir.
|
Page generated in 0.0422 seconds