31 |
Visualización de Flujos no Isotérmicos con un Dispositivo óptico SchlierenYoma Vásquez, Jorge Luis January 2007 (has links)
No description available.
|
32 |
Dynamic fluidic nozzles for pulse detonation engine applicationsMcClure, James R. III 03 1900 (has links)
Approved for public release; distribution is unlimited. / An efficient nozzle design is critical for enhancing the benefits of Pulse Detonation Engines (PDEs) and enabling
their use as future propulsion or power generation systems. Due to the inherent variation in chamber pressure for
Pulse Detonation Combustors, it has been difficult to design a nozzle, which has the capability to provide an
appropriate exit-to-throat area ratio suited for both the detonation blow-down event and refresh pressures associated
with the cyclic operation of a PDE. A two-dimensional PDE exit nozzle was designed, modeled, and constructed in
an attempt to increase the overall efficiency of converting thermal energy to kinetic energy by providing a fluidic
method to dynamically vary the effective nozzle area ratio. A fluidic nozzle configuration was evaluated, which had
the ability to inject a small amount of air into the diverging section of the nozzle in order to dynamically create a more
desirable exit-to-throat area ratio. Experimental testing was conducted on various injection flow rates, and a
shadowgraph system was used to observe the fluid flow characteristics within the nozzle. Computer simulations were
used to analyze the fluid flow properties within the nozzle. A comparison of the computer simulations and the
experimental results was performed and demonstrated good agreement. / Lieutenant, United States Navy
|
33 |
Experimental Investigation of Detonation Re-initiation Mechanisms Following a Mach Reflection of a Quenched DetonationBhattacharjee, Rohit Ranjan January 2013 (has links)
Detonation waves are supersonic combustion waves that have a multi-shock front structure followed by a spatially non-uniform reaction zone. During propagation, a de-coupled shock-flame complex is periodically re-initiated into an overdriven detonation following a transient Mach reflection process. Past researchers have identified mechanisms that can increase combustion rates and cause localized hot spot re-ignition behind the Mach shock. But due to the small length scales and stochastic behaviour of detonation waves, the important mechanisms that can lead to re-initiation into a detonation requires further clarification.
If a detonation is allowed to diffract behind an obstacle, it can quench to form a de-coupled shock-flame complex and if allowed to form a Mach reflection, re-initiation of a detonation can occur. The use of this approach permits the study of re-initiation mechanisms reproducibly with relatively large length scales. The objective of this study is to experimentally elucidate the key mechanisms that can increase chemical reaction rates and sequentially lead to re-initiation of a de-coupled shock-flame complex into an overdriven detonation wave following a Mach reflection.
All experiments were carried out in a thin rectangular channel using a stoichiometric mixture of oxy-methane. Three different types of obstacles were used - a half-cylinder, a roughness plate along with the half-cylinder and a full-cylinder. Schlieren visualization was achieved by using a Z-configuration setup, a high speed camera and a high intensity light source.
Results indicate that forward jetting of the slip line behind the Mach stem can potentially increase combustion rates by entraining hot burned gas into unburned gas. Following ignition and jet entrainment, a detonation wave first appears along the Mach stem. The transverse wave can form a detonation wave due to rapid combustion of unburned gas which may be attributed to shock interaction with the unburned gas. Alternatively, the Kelvin-Helmholtz instability can produce vortices along the slipline that may lead to mixing between burned-unburned gases and potentially increase combustion rates near the transverse wave. However, the mechanism(s) that causes the transverse wave to re-initiate into a detonation wave remains to be satisfactorily resolved.
|
34 |
Schlieren and PLIF imaging for hydrogen-air detonations /Rojas Chavez, Samir Boset January 2019 (has links)
Orientador: João Andrade de Carvalho / Resumo: Application technologies based on the detonation cycle has proven a significant impact on the overall efficiency. However, detonation engines are not currently available on the markets due to the lack of physical and chemical knowledge of the detonation phenomenon. The present study aims to provide new insights by studying the pressure and velocity, the density gradient of the detonation wave, and the OH distribution on the reaction zone of hydrogen-air detonation. Three strategies were proposed to obtain repeatable detonation events. The strategies vary on the geometry of the obstacle and the amount of spark plug to ignite the mixture. Pressure and velocity were recorded to determine if the transition from deflagration to detonation is successful. To image the density gradient of the shock wave, the optical technique called Schlieren was adapted to the detonation test bench. The OH radical distribution was studied by the optical diagnostic technique called planar laser-induced fluorescence. The pressure trace results showed high peaks in the regimen of Chapman-Jouguet state for detonation, unlike fast flames. The velocity results showed a considerable influence of the obstacle geometry to enhance the velocity of the wave, although the repeatable detonation events and the steadiness of the velocity were not boosted. The third strategy proved that adding more energy to a transient detonation wave, enhanced the stability and the consistent production of detonation events. The S... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
|
35 |
Studium vlivu ochranné atmosféry na kvalitu svaru a parametry laserového svařování / Study of the effect shielding gas on the quality of weld and parameters of laser weldingProcházka, Libor January 2017 (has links)
The subject of this diploma thesis is the use of laser welding technology in protective atmospheres. Based on the literary research presented in the theoretical part of the thesis, two experiments were made. Welding of materials X5CrNi18-10 and X2CrNiMo17-13-2. Welded sheets were performed in three different protective atmospheres. Samples were made from the welded sheets for measuring tensile strength, hardness, macrostructure and microstructure. These samples were analyzed. The output of the analysis is the evaluation of the impact that the protective atmosphere have on the quality of the welded joint and optimal process parameters.
|
36 |
Tidally Generated Internal Waves from Asymmetric TopographiesHakes, Kyle Jeffrey 17 November 2020 (has links)
Internal waves are generated in stratified fluids, like the ocean, where density increases with depth. Tides are one of the major generation mechanisms of internal waves. As the tides move water back and forth over underwater topography, internal waves can be generated. The shape of the topography plays a major part in the properties of the generated internal wave and the type of wave and energy is known for multiple symmetric topographies, such as Gaussian or sinusoidal. In order to further understand the effects topographic shape plays, the effect of asymmetry on internal waves is investigated. First, two experimental methods are compared to evaluate which will capture the relevant information for comparing waves generated from oscillating asymmetric topographies. Two experimental methods are often used in internal wave research, Synthetic Schlieren (SS) and Particle Image Velocimetry (PIV). Both SS and PIV experimental methods are used to analyze a set of experiments in a variety of density profiles and with a variety of topographies. The results from these experiments are then compared both qualitatively and quantitatively to decide which method to use for further research. In the setup, the larger field of view of SS results in superior resolution in wavenumber analysis, when compared to PIV. In addition, SS is 25% faster to setup and significantly cheaper. These are the deciding factors leading to the selection of SS as the preferred experimental method for further tests regarding tidally generated internal waves from asymmetric topographies. Previous experimental and theoretical research on tidally generated internal waves has most often used symmetric topographies. However, due to the complex nature of real ocean topography, the effect of asymmetry can not be overlooked. A few studies have shown that asymmetry can have a significant effect on internal wave generation, but topographic asymmetry has not been studied in a systematic manner up to this point. This work presents a comparison of tidally generated internal waves from nine different asymmetric topographies, consisting of a steeper Gaussian curve on one side, and a wider Gaussian curve on the other. The wider curve has varying amplitude from 1 to 0.6 of the steeper curve's amplitude, and two oscillation frequencies are explored. First, kinetic energy density in tidally generated internal waves is compared qualitatively and quantitatively, in both physical and Fourier space. When compared to similar symmetric topographies, the asymmetric topographies varied distinctly in the amount of internal wave kinetic energy generated. In general, internal wave kinetic energy generated from asymmetric topographies is higher for waves generated at a lower frequency than at a higher frequency. Also, kinetic energy is higher in internal waves on the relatively steeper side of the topography. There is very little kinetic energy in the higher wavenumbers, with most of the internal waves being generated at the lower wavenumbers. The amplitude does not make an appreciable difference in the wavenumber at which the internal waves are generated. Thus, the differences quantified here are due solely to changing slope, showing a significant impact of a relatively slight asymmetry.
|
37 |
Traversing hot jet ignition delay of hydrocarbon blends in a constant volume combustorChowdhury, M. Arshad Zahangir 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A chemically reactive turbulent traversing hot-jet issued from a pre-chamber to a relatively long combustion chamber is experimentally investigated. The long combustion chamber represents a single channel of a wave rotor constant-volume combustor. The issued jet ignites the fuel-air mixture in the combustion chamber. Fuel-air mixtures are prepared with different hydrocarbon fuels of different reactivity, namely, methane, propane, methane-hydrogen blend, methane-propane blend and methane-argon blend. The jet acts as a rapid, distributed and moving source of ignition, traversing across one end of the long combustion chamber entrance, induces complex flow structures such as a train of counter rotating vortices that enhance turbulent mixing. In general, a stationary hot-jet ignition process lack these structures due to absence of the traversing motion. The ignition delay of the fuels and fuel blends are measured in order to obtain insights about constant-volume pressure-gain combustion process initiated by a moving source of ignition and also to glean useful data about design and operation of a wave rotor combustor.
Reactive hot-jets are useful to ignite fuel-air mixtures in internal combustion engines and novel wave rotor combustors. A reactive hot-jet or puff of gas issued from a suitably designed pre-chamber can act as rapid, distributed and less polluting ignition source in internal combustion engines. Each cylinder of the engine is provided with its own pre-chamber. A wave rotor combustor has an array of circumferentially arranged channels on a rotating drum. Each channel acts as a constant-volume combustor and produces high pressure combustion products. Implementation of hot-jet igniter in a wave rotor combustor offers utilization of available high temperature and high pressure reactive combustion products residing in each of the wave rotor channels as a distributed source of ignition for other channels, thus requiring no special pre-chamber in ultimate implementation. Such reactive products or partially combusted and radical-laden gases can be issued from one or more channels to ignite the fuel-air mixture residing in another channel. Due to the rotation of the rotor channels, the issued hot-jet would have relative motion with respect to one end of the channels and traverse across it. This thesis aims to investigate the effects of jet traverse time experimentally on ignition delay along with other important factors that affect the hot-jet ignition process such as fuel reactivity, fuel-air mixture preparation quality and stratification and equivalence ratio.
In this study, the traversing motion of the hot-jet at one end of the main combustion chamber is implemented by keeping the main combustion chamber stationary and rotating a pre-chamber at speeds of 400 RPM, 800 RPM and 1200 RPM. The rotational speeds correspond to jet traverse times of 16.9 ms, 8.4 ms and 5.6 ms respectively. The fuel-air mixture inside the channel is at room temperature and pressure initially and its equivalence ratio is varied from 0.4 to 1.3. The cylindrical pre-chamber is initially filled with a 50%-50% methane-hydrogen blend fuel and air mixture at room pressure and temperature and at an equivalence ratio of 1.1. These conditions were chosen based on prior evidence of ignition rapidity with the jet properties. The hot-jet is issued by rupturing a thin diaphragm isolating the chambers.
Using high frequency dynamic pressure transducer pressure histories, the diaphragm rupture moment and onset of ignition is measured. Pressure traces from two transducers are employed to measure the initial rupture shock speed and ignition delay. Schlieren images recorded by a high speed camera are used to identify ignition moment and validate the measured ignition delay times. Ignition delay is defined as time interval from the rupture moment to onset of ignition of fuel-air mixture in the main combustion chamber. The ignition system is designed to produce diaphragm rupture at almost exactly the moment when jet traverse begins. Ignition delay times are measured for methane, propane, methane-hydrogen blends, methane-propane blend and methane-argon blend. The equivalence ratio of the fuel-air mixtures varied from 0.4 to 1.3 in steps of 0.1 for stationary-hot jet ignition experiments and in steps of 0.3 for traversing hot-jet ignition experiments.
Hot-jet ignition delay of fuel-air mixtures, for both stationary hot-jet ignition process and traversing hot-jet ignition process, generally increased with increasing equivalence ratio. For stationary hot-jet ignition delay, the minimum ignition delay occurs between Ф = 0.4 to Ф = 0.6 for the tested fuel-air mixtures. Both stationary and traversing hot-jet ignition delay depended on fuel reactivity. In particular, the shortest ignition delay times were observed for a fuel blend containing hydrogen. Among pure fuels propane exhibited slightly shorter ignition delay times, on average, compared to pure methane fuel. The addition of argon to pure methane, intended to control fuel density and buoyancy, increased the ignition delay. The traversing hot-jet ignition delay generally increased with increasing jet traverse times.
To explain the variations in the measured hot-jet ignition delay and investigate qualitatively the effect of buoyancy on flame propagation and mixture stratification, the fuel-air mixture inside the main combustion chamber was ignited using a spark plug to generate a propagating laminar flame. The laminar flame propagated within the flammable regions of the channel in ways that sensitively reveal variations in local fuel-air mixture equivalence ratio. Flame luminosity images from a high speed camera and schlieren images revealed the fuel-air mixture being highly stratified depending on the density difference between the fuel and air and provided mixing time (0 s, 10s ,30s for most fuels). The lack of buoyancy-driven spreading caused the fuel to remain in the vicinity of the fuel injector resulting in significant longitudinal stratification of the fuel-air mixture. Lighter fuels stratified to the top of the chambers and heavier fuel stratified to the bottom of the chamber. Increasing the mixing time, which is defined as the time interval from end of fuel injection into the chamber to the triggering of the spark plug, improved the buoyancy-driven spreading and extended the flammable region as evidenced by the schlieren and flame luminosity images.
The maximum pressure developed in the combustor for the three ignition processes, namely, stationary hot-jet ignition, traversing hot-jet ignition and spark ignition process in laminar flame propagation experiments were compared. Stationary hot-jet ignition process generally exhibited the highest pressure being developed in the chamber. Variations in heat loss, fuel-air mixture leakage and mass addition mechanisms reduced the maximum pressure for spark ignition and traversing hot-jet ignition process.
|
38 |
Internal Wave Generation Over Rough, Sloped Topography: An Experimental StudyEberly, Lauren Elizabeth 06 December 2012 (has links) (PDF)
Internal waves exist everywhere in stratified fluids - fluids whose density changes with depth. The two largest bodies of stratified fluid are the atmosphere and ocean. Internal waves are generated from a variety of mechanisms. One common mechanism is wind forcing over repeated sinusoidal topography, like a series of hills. When modeling these waves, linear theory has been employed due to its ease and low computational cost. However, recent research has shown that non-linear effects, such as boundary layer separation, may have a dramatic impact on wave generation. This research has consisted of experimentation on sloped, sinusoidal hills. As of yet, no experimental research has been done to characterize internal wave generation when repeated sinusoidal hills lie on a sloped surface such as a continental slope or a foothill. In order to perform this experiment, a laboratory was built which employed the synthetic schlieren method of wave visualization. Measurements were taken to find wind speed, boundary layer thickness, and density perturbation. From these data, an analysis was performed on wave propagation angle, wave amplitude, and pressure drag. The result of the analysis shows that when wind blows across a series of sloped sinusoidal hills, fluid becomes trapped in the troughs of the hills resulting in a lower apparent forcing amplitude. The generated waves contain less energy than linear predictions. Additionally, the sloped hills produce waves which propagate at an angle away from the viewer. A necessary correction, which shifts from the reference frame of the observer to the reference plane of the waves is described. When this correction is applied, it is shown that linear theory may only be applied for low Froude numbers. At high Froude numbers, the effect of the boundary layer is great enough that the wave characteristics deviate significantly from linear theory predictions. The analyzed data agrees well with previous studies which show a similar deviation from linear theory.
|
39 |
Roughness Effects on Boundary-Layer Transition and Schlieren Development in the Boeing/AFOSR Mach-6 Quiet TunnelBethany Nicole Price (17583702) 07 December 2023 (has links)
<p dir="ltr">The Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) was used for a set of experiments studying the effect of isolated roughness elements on boundary-layer transition on a 7° half-angle cone. In quiet flow, the cone was tested at Reynolds numbers of 7.4 × 10e6 /m, 10.2 × 10e6 /m, and 13.0 × 10e6 /m. Tests were also completed at Re = 11.0 × 10e6 /m in noisy flow to examine the effects of freestream noise. The cone was set at both 0° and 6° angle of attack and an isolated, square trip oriented like a diamond with respect to the flow direction was attached before each set of runs. </p><p dir="ltr">Using infrared thermography and pressure transducers, the location of transition onset was estimated for each test. The results followed all expected trends: transition moved upstream as trip height increased, transition occurred earlier at higher freestream Reynolds numbers, and transition was significantly delayed in quiet flow compared to noisy flow. Mean flow solutions were generated to calculate correlation values commonly used to predict transition. Theexperimentaldatawasthenusedinconjunctionwiththesecorrelationvalues to identify a range of critical values that could be used to predict transition behavior. </p><p dir="ltr">Additionally, a z-type schlieren setup was developed for the BAM6QT. Various components were upgraded and standard procedures for aligning the system were developed. A new pulsed laser and high-speed camera were integrated into the system to enable schlieren imaging at up to 1.75M fps. The final configuration allows the schlieren system to be used for various applications with minimal adjustments, and has been utilized in many research projects in the BAM6QT.</p>
|
40 |
A Characterization of Hypersonic Stagnation Point Injection in Noisy and Quiet FlowDominick E DeFazio (18431565) 29 April 2024 (has links)
<p dir="ltr">The Boeing-AFOSR Mach-6 Quiet Tunnel (BAM6QT) was used for a set of experiments aiming to characterize the stability regimes of stagnation point injection in noisy and quiet flow across an array of different injected gases. Four gases were used in this experiment: air, helium, carbon dioxide, and argon. These gases were injected at varying thrust coefficients, ranging from 0.0516 to 0.5666, using a 7 degree half-angle cone with a 19 mm radius spherical nose and a single 1.93 mm-radius sonic jet in the center of the model. The primary data collected consists of schlieren images gathered at a sample rate of 76 kHz. These data were then analyzed using a shock tracking software to measure the physical locations of flow features as well as through spectral proper orthogonal decomposition (SPOD) to analyze specific modes in the flow.</p><p dir="ltr">Through this analysis, it was observed that three principle modes exist in stagnation point injection regardless of the injecting gas: a high frequency vortex-coupled mode, a low frequency Mach-shock-rigid mode, and a hybrid mode residing between these two modes. The first two modes were observed in all stability regimes, whereas the hybrid mode was only observed in the bifurcated regime. Furthermore, the unsteady regime was observed to be mostly characterized by this first, vortex-coupled mode. Conversely, the steady regime was observed to be driven by the Mach-shock-rigid mode instead. This transition was measured to occur as the thrust coefficient was increased.</p><p dir="ltr">This research also found that freestream noise resulted in an amplified and widened frequency range within the Mach-shock-rigid mode. This same freestream noise did not appear to have an impact on the other two principle modes; however, in some cases the noise produced in the Mach-shock-rigid mode due to this freestream noise did in fact mask the other principle modes.</p><p dir="ltr">Lastly, it was observed that the thrust coefficient, in and of itself, is not the sole indicator of stability in stagnation point injection. Across the different injected gases in this research, transition between the stability regimes did not in fact occur at a constant thrust coefficient value. Additionally, even within the same injected gas, this transition did not occur at the same thrust coefficient value between noisy and quiet runs—indicating an effect of freestream noise on stability.</p>
|
Page generated in 0.0358 seconds