• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 23
  • 10
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 118
  • 28
  • 22
  • 21
  • 21
  • 18
  • 17
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

DGRSVX and DMSRIC: Fortran 77 subroutines for solving continuous-time matrix algebraic Riccati equations with condition and accuracy estimates

Petkov, P. Hr., Konstantinov, M. M., Mehrmann, V. 12 September 2005 (has links) (PDF)
We present new Fortran 77 subroutines which implement the Schur method and the matrix sign function method for the solution of the continuous­time matrix algebraic Riccati equation on the basis of LAPACK subroutines. In order to avoid some of the well­known difficulties with these methods due to a loss of accuracy, we combine the implementations with block scalings as well as condition estimates and forward error estimates. Results of numerical experiments comparing the performance of both methods for more than one hundred well­ and ill­conditioned Riccati equations of order up to 150 are given. It is demonstrated that there exist several classes of examples for which the matrix sign function approach performs more reliably and more accurately than the Schur method. In all cases the forward error estimates allow to obtain a reliable bound on the accuracy of the computed solution.
42

Algorithms for Toeplitz Matrices with Applications to Image Deblurring

Kimitei, Symon Kipyagwai 21 April 2008 (has links)
In this thesis, we present the O(n(log n)^2) superfast linear least squares Schur algorithm (ssschur). The algorithm we will describe illustrates a fast way of solving linear equations or linear least squares problems with low displacement rank. This program is based on the O(n^2) Schur algorithm speeded up via FFT. The algorithm solves a ill-conditioned Toeplitz-like system using Tikhonov regularization. The regularized system is Toeplitz-like of displacement rank 4. We also show the effect of choice of the regularization parameter on the quality of the image reconstructed.
43

Symmetry, Asymmetry and Quantum Information

Marvian Mashhad, Iman January 2012 (has links)
It is impossible to overstate the importance of symmetry in physics and mathematics. Symmetry arguments play a central role in a broad range of problems from simplifying a system of linear equations to a deep role in organizing the fundamental principles of physics. They are used, for instance, in Noether’s theorem to find the consequences of symmetry of a dynamics. For many systems of interest, the dynamics are sufficiently complicated that one cannot hope to characterize their evolution completely, whereas by appealing to the symmetries of the dynamical laws one can easily infer many useful results. In part I of this thesis we study the problem of finding the consequences of symmetry of a (possibly open) dynamics from an information-theoretic perspective. The study of this problem naturally leads us to the notion of asymmetry of quantum states. The asymmetry of a state relative to some symmetry group specifies how and to what extent the given symmetry is broken by the state. Characterizing these is found to be surprisingly useful to constrain which final states of the system can be reached from a given initial state. Another motivation for the study of asymmetry comes from the field of quantum metrology and relatedly the field of quantum reference frames. It turns out that the degree of success one can achieve in many metrological tasks depends only on the asymmetry properties of the state used for metrology. We show that some ideas and tools developed in the field of quantum information theory are extremely useful to study the notion of asymmetry of states and therefore to find the consequences of symmetry of an open or closed system dynamics. In part II of this thesis we present a novel application of symmetry arguments in the field of quantum estimation theory. We consider a family of multi-copy estimation problems wherein one is given n copies of an unknown quantum state according to some prior distribution and the goal is to estimate certain parameters of the given state. In particular, we are interested to know whether collective measurements are useful and if so to find an upper bound on the amount of entanglement which is required to achieve the optimal estimation. We introduce a new approach to this problem by considering the symmetries of the prior and the symmetries of the parameters to be estimated. We show that based on these symmetries one can find strong constraints on the amount of entanglement required to implement the optimal measurement. In order to infer properties of the optimal estimation procedure from the symmetries of the parameters and the prior we come up with a generalization of Schur-Weyl duality. Just as Schur-Weyl duality has many applications to quantum information theory and quantum algorithms so too does this generalization. In this thesis we explore some of these applications.
44

Cohomologia de grupos e algumas aplicações

Castro, Francielle Rodrigues de [UNESP] 15 March 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-03-15Bitstream added on 2014-06-13T19:47:19Z : No. of bitstreams: 1 castro_fr_me_sjrp.pdf: 783980 bytes, checksum: fd80e9aa8c69641da08ee43dfa94509d (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo principal deste trabalho é estudar a Teoria de Cohomologia de Grupos visando apresentar de forma detalhada algumas aplicações dessa teoria na Topologia e na Algebra, mais especificamente na Teoria de Grupos, com destaque para o Teorema de Schur-Zassenhaus e o Teorema de Classificação de p-grupos que possuem um subgrupo ciclico de índice p (p primo). / The aim of this work is to study the Cohomology Theory of Groups in order to present in detailed form some applications of this theory in Topology and in Algebra, more specifically, in the Theory of Groups, with prominence for the Schur-Zassenhaus Theorem and the Theorem of Classification of p-groups which contain a cyclic subgroup of index p, where p is a prime.
45

Campos de vetores lineares reversíveis equivariantes

Alves, Michele de Oliveira [UNESP] 02 1900 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-02Bitstream added on 2014-06-13T18:55:32Z : No. of bitstreams: 1 alves_mo_me_sjrp.pdf: 609574 bytes, checksum: 7280f95db92aacc87fc1116bf82914da (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Neste trabalho apresentamos um estudo dos campos de vetores lineares reversíveis e equivariantes. Tal estudo tem como base a Teoria de Representações de grupos de Lie compactos. Usaremos o fato de que a ascensão de um grupo de Lie compacto pode ser decomposta como soma direta de representações irredutíveis e de acordo com o Lema de Schur tais representações poderão ser de três tipos: R; C ou H. Daremos uma classificação das possíveis estruturas dos sistemas lineares reversíveis equivariantes baseado na teoria de representações citada acima e faremos um estudo dos autovalores para uma classe particular de funções Lreversíveis. Dessa forma temos um cenário bem claro da dinâmica de tais sistemas em cada uma dessas classes. / In this work we present a study of the linear equivariant reversible vector fields. This study is based on the Theory of Representation of compact Lie groups. We use the fact that an action of a compact Lie group can be decomposed as a direct sum of irreducible representations, and according to Schur's Lemma these representations can be only of three types: R; C ou H. We give a classification of the possible structures of the linear equivariant reversible systems based on the Theory of Representations mentioned above and we study of the eigenvalues for a particular classes of Lreversible maps. In this way we have a very clear scenario about the dynamics of such systems in each one of these classes.
46

Infinite dimensional versions of the Schur-Horn theorem

Jasper, John, 1981- 06 1900 (has links)
ix, 99 p. / We characterize the diagonals of four classes of self-adjoint operators on infinite dimensional Hilbert spaces. These results are motivated by the classical Schur-Horn theorem, which characterizes the diagonals of self-adjoint matrices on finite dimensional Hilbert spaces. In Chapters II and III we present some known results. First, we generalize the Schur-Horn theorem to finite rank operators. Next, we state Kadison's theorem, which gives a simple necessary and sufficient condition for a sequence to be the diagonal of a projection. We present a new constructive proof of the sufficiency direction of Kadison's theorem, which is referred to as the Carpenter's Theorem. Our first original Schur-Horn type theorem is presented in Chapter IV. We look at operators with three points in the spectrum and obtain a characterization of the diagonals analogous to Kadison's result. In the final two chapters we investigate a Schur-Horn type problem motivated by a problem in frame theory. In Chapter V we look at the connection between frames and diagonals of locally invertible operators. Finally, in Chapter VI we give a characterization of the diagonals of locally invertible operators, which in turn gives a characterization of the sequences which arise as the norms of frames with specified frame bounds. This dissertation includes previously published co-authored material. / Committee in charge: Marcin Bownik, Chair; N. Christopher Phillips, Member; Yuan Xu, Member; David Levin, Member; Dietrich Belitz, Outside Member
47

Schur-Like Forms for Matrix Lie Groups, Lie Algebras and Jordan Algebras

Ammar, Gregory, Mehl, Christian, Mehrmann, Volker 09 September 2005 (has links) (PDF)
We describe canonical forms for elements of a classical Lie group of matrices under similarity transformations in the group. Matrices in the associated Lie algebra and Jordan algebra of matrices inherit related forms under these similarity transformations. In general, one cannot achieve diagonal or Schur form, but the form that can be achieved displays the eigenvalues of the matrix. We also discuss matrices in intersections of these classes and their Schur-like forms. Such multistructered matrices arise in applications from quantum physics and quantum chemistry.
48

Implementierung eines parallelen vorkonditionierten Schur-Komplement CG-Verfahrens in das Programmpaket FEAP

Meisel, Mathias, Meyer, Arnd 30 October 1998 (has links) (PDF)
A parallel realisation of the Conjugate Gradient Method with Schur-Complement preconditioning, based on a domain decomposition approach, is described in detail. Special kinds of solvers for the resulting interiour and coupling systems are presented. A large range of numerical results is used to demonstrate the properties and behaviour of this solvers in practical situations.
49

Parallel Preconditioners for Plate Problem

Matthes, H. 30 October 1998 (has links) (PDF)
This paper concerns the solution of plate bending problems in domains composed of rectangles. Domain decomposition (DD) is the basic tool used for both the parallelization of the conjugate gradient method and the construction of efficient parallel preconditioners. A so-called Dirich- let DD preconditioner for systems of linear equations arising from the fi- nite element approximation by non-conforming Adini elements is derived. It is based on the non-overlapping DD, a multilevel preconditioner for the Schur-complement and a fast, almost direct solution method for the Dirichlet problem in rectangular domains based on fast Fourier transform. Making use of Xu's theory of the auxiliary space method we construct an optimal preconditioner for plate problems discretized by conforming Bogner-Fox-Schmidt rectangles. Results of numerical experiments carried out on a multiprocessor sys- tem are given. For the test problems considered the number of iterations is bounded independent of the mesh sizes and independent of the number of subdomains. The resulting parallel preconditioned conjugate gradient method requiresO(h^-2 ln h^-1 ln epsilon^-11) arithmetical operations per processor in order to solve the finite element equations with the relative accuracy epsilon.
50

Analysis and Implementation of Preconditioners for Prestressed Elasticity Problems : Advances and Enhancements

Dorostkar, Ali January 2017 (has links)
In this work, prestressed elasticity problem as a model of the so-called glacial isostatic adjustment (GIA) process is studied. The model problem is described by a set of partial differential equations (PDE) and discretized with a mixed finite element (FE) formulation. In the presence of prestress the so-constructed system of equations is non-symmetric and indefinite. Moreover, the resulting system of equations is of the saddle point form. We focus on a robust and efficient block lower-triangular preconditioning method, where the lower diagonal block is and approximation of the so-called Schur complement. The Schur complement is approximated by the so-called element-wise Schur complement. The element-wise Schur complement is constructed by assembling exact local Schur complements on the cell elements and distributing the resulting local matrices to the global preconditioner matrix. We analyse the properties of the element-wise Schur complement for the symmetric indefinite system matrix and provide proof of its quality. We show that the spectral radius of the element-wise Schur complement is bounded by the exact Schur complement and that the quality of the approximation is not affected by the domain shape. The diagonal blocks of the lower-triangular preconditioner are combined with inner iterative schemes accelerated by (numerically) optimal and robust algebraic multigrid (AMG) preconditioner. We observe that on distributed memory systems, the top pivot block of the preconditioner is not scaling satisfactorily. The implementation of the methods is further studied using a general profiling tool, designed for clusters. For nonsymmetric matrices we use the theory of Generalized Locally Toeplitz (GLT) matrices and show the spectral behavior of the element-wise Schur complement, compared to the exact Schur complement. Moreover, we use the properties of the GLT matrices to construct a more efficient AMG preconditioner. Numerical experiments show that the so-constructed methods are robust and optimal.

Page generated in 0.072 seconds