61 |
Block SOR for Kronecker structured representationsBuchholz, Peter, Dayar, Tuğrul 15 January 2013 (has links)
Hierarchical Markovian Models (HMMs) are composed of multiple low level models (LLMs) and high level model (HLM) that defines the interaction among LLMs. The essence of the HMM approach is to model the system at hand in the form of interacting components so that its (larger) underlying continous-time Markov chain (CTMC) is not generated but implicitly represented as a sum of Kronecker products of (smaller) component matrices. The Kronecker structure of an HMM induces nested block partitionings in its underlying CTMC. These partitionings may be used in block versions of classical iterative methods based on splittings, such as block SOR (BSOR), to solve the underlying CTMC for its stationary vector. Therein the problem becomes that of solving multiple nonsingular linear systems whose coefficient matrices are the diagonal blocks of a particular partitioning. This paper shows that in each HLM state there may be diagonal blocks with identical off-diagonal parts and diagonals differing from each other by a multiple of the identity matrix. Such diagonal blocks are named candidate blocks. The paper explains how candidate blocks can be detected and how the can mutually benefit from a single real Schur factorization. It gives sufficient conditions for the existence of diagonal blocks with real eigenvalues and shows how these conditions can be checked using component matrices. It describes how the sparse real Schur factors of candidate blocks satisfying these conditions can be constructed from component matrices and their real Schur factors. It also demonstrates how fill in- of LU factorized (non-candidate) diagonal blocks can be reduced by using the column approximate minimum degree algorithm (COLAMD). Then it presents a three-level BSOR solver in which the diagonal blocks at the first level are solved using block Gauss-Seidel (BGS) at the second and the methods of real Schur and LU factorizations at the third level. Finally, on a set of numerical experiments it shows how these ideas can be used to reduce the storage required by the factors of the diagonal blocks at the third level and to improve the solution time compared to an all LU factorization implementation of the three-level BSOR solver.
|
62 |
Méthodologies et outils de synthèse pour des fonctions de filtrage chargées par des impédances complexes / Methodologies and synthesis tools for functions filters loaded by complex impedancesMartinez Martinez, David 20 June 2019 (has links)
Le problème de l'adaptation d'impédance en ingénierie des hyper fréquences et en électronique en général consiste à minimiser la réflexion de la puissance qui doit être transmise, par un générateur, à une charge donnée dans une bande de fréquence. Les exigences d'adaptation et de filtrage dans les systèmes de communication classiques sont généralement satisfaites en utilisant un circuit d'adaptation suivi d'un filtre. Nous proposons ici de concevoir des filtres d'adaptation qui intègrent à la fois les exigences d'adaptation et de filtrage dans un seul appareil et augmentent ainsi l'efficacité globale et la compacité du système. Dans ce travail, le problème d'adaptation est formulé en introduisant un problème d'optimisation convexe dans le cadre établi par la théorie de d'adaptation de Fano et Youla. De ce contexte, au moyen de techniques modernes de programmation semi-définies non linéaires, un problème convexe, et donc avec une optimalité garantie, est obtenu. Enfin, pour démontrer les avantages fournis par la théorie développée au-delà de la synthèse de filtres avec des charges complexes variables en fréquence, nous examinons deux applications pratiques récurrentes dans la conception de ce type de dispositifs. Ces applications correspondent, d'une part, à l'adaptation d'un réseau d'antennes dans le but de maximiser l'efficacité du rayonnement, et, d'autre part, à la synthèse de multiplexeurs où chacun des filtres de canal est adapté au reste du dispositif, notamment les filtres correspondant aux autres canaux. / The problem of impedance matching in electronics and particularly in RF engineering consists on minimising the reflection of the power that is to be transmitted, by a generator, to a given load within a frequency band. The matching and filtering requirements in classical communication systems are usually satisfied by using a matching circuit followed by a filter. We propose here to design matching filters that integrate both, matching and filtering requirements, in a single device and thereby increase the overall efficiency and compactness of the system. In this work, the matching problem is formulated by introducing convex optimisation on the framework established by the matching theory of Fano and Youla. As a result, by means of modern non-linear semi-definite programming techniques, a convex problem, and therefore with guaranteed optimality, is achieved. Finally, to demonstrate the advantages provided by the developed theory beyond the synthesis of filters with frequency varying loads, we consider two practical applications which are recurrent in the design of communication devices. These applications are, on the one hand, the matching of an array of antennas with the objective of maximizing the radiation efficiency, and on the other hand the synthesis of multiplexers where each of the channel filters is matched to the rest of the device, including the filters corresponding to the other channels.
|
63 |
Liens combinatoires entre fonctions quasisymétriques et tableaux dans les groupes de Coxeter. / Combinatorial links between quasisymmetric functions and tableaux for Coxeter groups.Mayorova, Alina 12 June 2019 (has links)
L'algèbre des fonctions symétriques est un outil majeur de la combinatoire algébrique qui joue un rôle central dans la théorie des représentations du groupe symétrique. Cette thèse traite des fonctions quasisymétriques, une puissante généralisation introduite par Gessel en 1984, avec des applications significatives dans l'énumération d'objets combinatoires majeurs tels que les permutations, les tableaux de Young et les P-partitions. Plus précisément, nous trouvons un nouveau lien entre l'extension des fonctions quasisymétriques de Chow à des groupes de Coxeter de type B et des tableaux de dominos. Ceci nous permet d'apporter de nouveaux résultats dans divers domaines, notamment les constantes de structure de l'algèbre de descente de Solomon de type B, l'extension de la théorie de la Schur-positivité aux permutations signées et l'étude d'une formule de Cauchy de type B $q$-déformée avec des implications importantes statistiques pour les tableaux dominos.Parmi les bases remarquables de l'algèbre des fonctions symétriques, les fonctions de Schur ont fait l'objet d'une attention particulière car elles sont étroitement liées aux caractères irréductibles du groupe linéaire général et aux diagrammes de Young. La fonction symétrique de Schur est la fonction génératrice des tableaux de Young semistandards. Ce résultat s'étend aux formes gauches et permet d'écrire n'importe quelle fonction de Schur (gauche) comme la somme des fonctions quasisymétriques fondamentales de Gessel, indexées par l'ensemble de descente de tous les tableaux de Young standard d'une forme donnée. En outre, la célèbre formule de Cauchy pour les fonctions de Schur donne une preuve algébrique de la correspondance de Robinson-Schensted-Knuth. Enfin, les constantes de structure pour la multiplication et la comultiplication des polynômes de Schur sont respectivement les coefficients de Littlewood-Richardson et de Kronecker, deux familles importantes de coefficients ayant diverses applications combinatoires et algébriques. En utilisant des résultats connus sur les fonctions quasisymétriques fondamentales de Gessel, nous montrons que ces propriétés impliquent directement et de façon purement algébrique divers résultats pour les constantes de structure de l'algèbre de descente de Salomon d'un groupe de Coxeter fini de type A et la propriété de préservation de descente de la correspondance de Robinson-Schensted, un outil essentiel pour identifier les ensembles Schur-positifs, c'est-à-dire les ensembles de permutations dont la fonction quasisymétrique associée est symétrique et qui peut s'écrire sous la forme d'une somme non négative de fonctions symétriques de Schur.Pour étendre ces résultats aux groupes de Coxeter de type B, nous avons introduit une famille de fonctions génératrices modifiées pour les tableaux de dominos et la relions aux fonctions quasisymétriques fondamentales de type B de Chow. Grâce à cette relation, nous obtenons de nouvelles formules reliant les constantes de structure de l'algèbre de descente de Salomon de type B aux coefficients de Kronecker et de Littlewood-Richardson de type B.Cela nous permet en outre d'introduire une nouvelle extension de type B de la Schur-positivité basée sur une définition de la descente pour les permutations signées, conforme à la définition abstraite de Solomon pour tous les groupes de Coxeter. Nous concevons des bijections préservant la descente entre des permutations d'arc signées et des ensembles de tableaux de dominos afin de montrer qu'ils sont bien type B Schur-positifs.Enfin, nous introduisons une $ q $-déformation des fonctions génératrices modifiées pour les tableaux de dominos afin d'étendre une identité de Cauchy de type B proposée par Lam et de la lier aux fonctions quasisymétriques de Chow. Nous appliquons ce résultat à un nouveau cadre de positivité de type B $ q $ -Schur et à la démonstration de nouveaux résultats d'équidistribution pour certains ensembles de tableaux de dominos. / The algebra of symmetric functions is a major tool in algebraic combinatorics that plays a central role in the representation theory of the symmetric group. This thesis deals with quasisymmetric functions, a powerful generalisation introduced by Gessel in 1984, with significant applications in the enumeration of major combinatorial objects as permutations, Young tableaux and P-partitions. More specifically we find a new connection between Chow's extension of quasisymmetric functions to Coxeter groups of type B and domino tableaux. It allows us to contribute new results to various fields including the structure constants of type B Solomon's descent algebra, the extension of the theory of Schur-positivity to signed permutations and the study a $q$-deformed type B Cauchy formula with important implications regarding statistics for domino tableaux.Among the remarkable bases of the algebra of symmetric functions, Schur functions received a particular attention as they are strongly related to the irreducible characters of the general linear group and Young diagrams. The Schur symmetric function is the generating function for semistandard Young tableaux. This result extends to skew shapes and allows to write any (skew-) Schur function as the sum of Gessel's fundamental quasisymmetric functions indexed by the descent set of all standard Young tableaux of a given shape. Furthermore the celebrated Cauchy formula for Schur functions gives an algebraic proof of the Robinson-Schensted-Knuth correspondence. Finally, the structure constants for the outer product and inner product of Schur polynomials are respectively the Littlewood-Richardson and Kronecker coefficients, two important families of coefficients with various combinatorial and algebraic applications. Using known results about Gessel's fundamental quasisymmetric functions we show that these properties imply directly and in a pure algebraic fashion, various results for the structure constants of the Solomon descent algebra of a finite Coxeter group of type A and the descent preserving property of the Robinson-Schensted correspondence, an essential tool to identify Schur-positive sets, i.e. sets of permutations whose associated quasisymmetric function is symmetric and can be written as a non-negative sum of Schur symmetric functions.To extend these results to Coxeter groups of type B we introduced a family of modified generating functions for domino tableaux and relate it to Chow's type B fundamental quasisymmetric functions. Thanks to this relation we derive new formulas relating the structure constants of the type B Solomon's descent algebra with type B Kronecker and Littlewood-Richardson coefficients.It further allows us to introduce a new type B extension of Schur-positivity based on a definition of descent for signed permutations that is conform to the abstract definition of Solomon for any Coxeter groups. We design descent preserving bijections between signed arc permutations and sets of domino tableaux to show that they are indeed type B Schur-positive.Finally, we introduce a $q$-deformation of the modified generating functions for domino tableaux to extend a type B Cauchy identity by Lam and link it with Chow's quasisymmetric functions. We apply this result to a new framework of type B $q$-Schur positivity and to prove new equidistribution results for some sets of domino tableaux.
|
64 |
Sheaf theoretic methods in modular representation theoryMautner, Carl Irving 05 October 2010 (has links)
This thesis concerns the use of perverse sheaves with coefficients in commutative rings and in particular, fields of positive characteristic, in the study of modular representation theory. We begin by giving a new geometric interpretation of classical connections between the representation theory of the general linear groups and symmetric groups. We then survey work, joint with D. Juteau and G. Williamson, in which we construct a class of objects, called parity sheaves. These objects share many properties with the intersection cohomology complexes in characteristic zero, including a decomposition theorem and a close relation to representation theory. The final part of this document consists of two computations of IC stalks in the nilpotent cones of sl₃and sl₄. These computations build upon our calculations in sections 3.5 and 3.6 of (31), but utilize slightly more sophisticated techniques and allow us to compute the stalks in the remaining characteristics. / text
|
65 |
Ortho-ambivalence des groupes finis / Ortho-ambivalence of finite groupsNtabuhashe Zahinda, Obed 16 May 2008 (has links)
Soient G un groupe fini et k un corps dont la caractéristique ne divise pas l’ordre de G. Il est établi, d’une part que pour que tous les caractères irréductibles de G soient réels, il faut et il suffit que G soit ambivalent; d’autre part, que pour que la restriction de l’involution canonique à chaque composante simple de l’algèbre de groupe kG soit une involution de première espèce, il faut et il suffit que G soit ambivalent. G est dit ortho-ambivalent par rapport à k si la restriction de l’involution canonique à chaque composante simple de l’algèbre de groupe kG est une involution orthogonale.
Dans cette thèse, nous démontrons que les propositions suivantes sont équivalentes : (i) G est ortho-ambivalent par rapport à k ; (ii) G est totalement orthogonal ; (iii) G est ambivalent et tout caractère irréductible de G est de type 1 ; (iv) G est ambivalent et la somme des degrés des caractères irréductibles de G égale le nombre d’éléments de G dont les carrés sont égaux à l’élément neutre de G ; de plus, si la caractéristique de k est différente de 2, ces propositions sont équivalentes à la suivante : (v) G est ambivalent et le premier groupe de Witt tordu de la catégorie des kG-modules libres finiment engendrés munie d’une dualité définie en fonction de l’involution canonique sur kG est trivial.
L’étude des 2-groupes spéciaux occupe une partie importante. Nous démontrons qu’un 2-groupe spécial ambivalent G d’application quadratique q est ortho-ambivalent par rapport à k si et seulement si pour toute forme linéaire s sur le centre de G (par rapport au corps à 2 éléments), l’invariant d’Arf de la forme quadratique induite par le transfert de q par s est nul. / Let G be a finite group and k a field whose characteristic does not divide the order of G. It is established, on the one hand that all irreducible characters of G are real if and only if G is ambivalent; in addition, that the restriction of the canonical involution on each simple component of the group algebra kG is an involution of first kind if and only if G is ambivalent. We say that G is ortho-ambivalent compared to k if the restriction of the canonical involution on each simple component of the group algebra kG is an orthogonal involution.
In this thesis, we show that the following conditions are equivalent: (I) G is ortho-ambivalent compared to k; (II) G is totaly orthogonal; (III) G is ambivalent and any irreducible character of G is of type 1; (iv) G is ambivalent and the sum of the degrees of the irreducible characters of G equalizes the number of elements of G whose squares are equal to the neutral element of G; moreover, if the characteristic of k is different from 2, these conditions are equivalent to the following one: (v) G is ambivalent and the first twisted Witt group of the category of the free kG-modules finitely generated provided with a duality defined according to the canonical involution on kG is trivial.
The study of the special 2-groups occupies a great part. We show that an ambivalent special 2-group G of quadratic application q is ortho-ambivalent compared to k if and only if for any linear form s on the center of G (compared to the field with 2 elements), the Arf invariant of the quadratic form induced by the transfer of q by s is null.
|
66 |
Quelques propriétés et algorithmes de calcul formel des polynômes symétriques et antisymetriquesGalli, Alain 11 May 1979 (has links) (PDF)
.
|
67 |
La topología de Bohr para grupos topológicos abelianosMacario Vives, Sergio 03 June 2002 (has links)
Para grupos topológicos abelianos maximalmente casi periódicos (en el sentido de von Neumann) es sencillo describir su compactación de Bohr, bG. En este caso puede identificarse bG con el conjunto de homomorfismos del dual de G en el toro de dimensión 1. La topología que G hereda como subgrupo de bG es la topología de Bohr de G. Resulta que la topología de Bohr es una topología totalmente acotada generada por el grupo de caracteres continuos de G. Con ese punto de partida y, utilizando el concepto de grupos en dualidad introducido por Varopoulos, se estudian diversas propiedades topológicas para la topología débil de una dualidad. Se obtiene con ello una caracterización de la débil realcompacidad en términos similares a los obtenidos por otros autores para espacios de Banach, espacios vectoriales topológicos localmente convexos y grupos abelianos localmente compactos. Además se obtienen caracterizaciones para la realcompacidad hereditaria y la pseudocompacidad. Diversos autores han considerado también el problema de la preservación de la compacidad, así como de otras propiedades topológicas, al pasar a la topología de Bohr. En esta tesis se introduce una nueva clase de grupos, los g-grupos, que aglutina a muchas otras clases de grupos topológicos: los grupos abelianos localmente compactos, los grupos aditivos de espacios vectoriales topológicos y los grupos nucleares, entre otros. Para esta nueva clase se obtiene una caracterización de la preservación de la compacidad que engloba y unifica las aproximaciones obtenidas separadamente para cada una de las clases mencionadas anteriormente. El estudio anterior se particulariza para los grupos metrizables, consiguiendo nuevas caracterizaciones estrechamente relacionadas con el trabajo de van Douwen para grupos discretos. En particular, se obtiene una caracterización para los grupos aditivos de espacios de Banach y se muestra, con un ejemplo de Bourgain, que ésta díficilmente puede ser refinada.
|
68 |
Anwendung adaptiver FEM für piezoelektrische und spezielle mechanische ProblemeSteinhorst, Peter 21 July 2009 (has links) (PDF)
Gegenstand der vorliegenden Arbeit ist die numerische Simulation piezoelektrischen Materialverhaltens, sowie spezieller Probleme aus der Mechanik (inkompressibles Materialverhalten) unter Anwendung der Methode der finiten Elemente.
Hierbei wird die Strategie der adaptiven Netzsteuerung angewendet, welche mit Hilfe einer lokalisierten a-posteriori Fehlerschätzung erlaubt, den lokalen Feinheitsgrad der Diskretisierung den Besonderheiten der Aufgabenstellung anzupassen.
Beide betrachteten Problemklassen führen nach der Diskretisierung und FEM auf Gleichungssysteme in spezieller Blockstruktur, die insgesamt symmetrisch, aber nicht positiv definit ist.
Als Löser kann nicht der gewöhnliche CG verwendet werden, stattdessen wird eine Variante des Bramble-Pasciak-CGs benutzt, welcher als Speziallöser die Matrizenstruktur ausnutzt.
Für diesen Löser wird eine Strategie zur Parameterwahl vorgeschlagen sowie die Wirksamkeit einer Vorkonditionierung im piezoelektrischen Fall theoretisch nachgewiesen.
Weiterhin wird die FEM einschließlich Adaptivität für Piezomaterialien auf rotationssymmetrische Probleme erweitert, so daß diese spezielle Problemklasse zweidimensional gerechnet werden kann. Numerische Vergleiche mit echter 3D-Rechnung illustrieren enorme Vorteile in Genauigkeit und Rechenaufwand.
Im letzten Kapitel werden in piezoelektrische Materialien hineinwachsende Risse betrachtet und entsprechende Anpassungen vorgenommen. Mit Wahl geeigneter Datenstrukturen und einer passenden Vorkonditionierung ist es möglich, eine Simulationssoftware bereitzustellen welche als Grundlage zum Test von Bruchkriterien verwendet werden kann.
Die beschriebenen numerischen Methoden wurden in ein bestehendes adaptives 2D-FEM-Programm implementiert, und an ausgewählten Beispielen ein Vergleich mit einer analytischen Lösung durchgeführt sowie die Effektivität der Rechnung getestet.
|
69 |
A Parallel Newton-Krylov-Schur Algorithm for the Reynolds-Averaged Navier-Stokes EquationsOsusky, Michal 13 January 2014 (has links)
Aerodynamic shape optimization and multidisciplinary optimization algorithms have the potential not only to improve conventional
aircraft, but also to enable the design of novel configurations. By their very nature, these algorithms generate and analyze a large
number of unique shapes, resulting in high computational costs. In order to improve their efficiency and enable their use in the
early stages of the design process, a fast and robust flow solution algorithm is necessary.
This thesis presents an efficient parallel Newton-Krylov-Schur flow solution algorithm for the three-dimensional
Navier-Stokes equations coupled with the Spalart-Allmaras one-equation turbulence model.
The algorithm employs second-order summation-by-parts (SBP) operators on multi-block structured grids with simultaneous
approximation terms (SATs) to enforce block interface coupling and boundary conditions.
The discrete equations are solved iteratively with an inexact-Newton method, while the linear
system at each Newton iteration is solved using the flexible Krylov
subspace iterative method GMRES with an approximate-Schur parallel preconditioner. The algorithm is thoroughly verified and validated, highlighting the
correspondence of the current algorithm with several established flow solvers.
The solution for a transonic flow over a wing on a mesh of medium density (15 million nodes) shows good agreement with experimental results.
Using 128 processors, deep convergence is obtained in under 90 minutes.
The solution of transonic flow over the Common Research Model wing-body geometry with
grids with up to 150 million nodes exhibits the expected grid
convergence behavior. This case was completed as part of the Fifth AIAA Drag Prediction Workshop,
with the algorithm producing solutions that compare favourably with several widely used flow solvers.
The algorithm is shown to scale well on over 6000 processors. The results demonstrate the effectiveness of the SBP-SAT
spatial discretization, which can be readily extended to high order, in combination with
the Newton-Krylov-Schur iterative method to produce a powerful parallel algorithm for the numerical solution of
the Reynolds-averaged Navier-Stokes equations.
The algorithm can efficiently solve the flow over a range of clean geometries, making it suitable for
use at the core of an optimization algorithm.
|
70 |
A Parallel Newton-Krylov-Schur Algorithm for the Reynolds-Averaged Navier-Stokes EquationsOsusky, Michal 13 January 2014 (has links)
Aerodynamic shape optimization and multidisciplinary optimization algorithms have the potential not only to improve conventional
aircraft, but also to enable the design of novel configurations. By their very nature, these algorithms generate and analyze a large
number of unique shapes, resulting in high computational costs. In order to improve their efficiency and enable their use in the
early stages of the design process, a fast and robust flow solution algorithm is necessary.
This thesis presents an efficient parallel Newton-Krylov-Schur flow solution algorithm for the three-dimensional
Navier-Stokes equations coupled with the Spalart-Allmaras one-equation turbulence model.
The algorithm employs second-order summation-by-parts (SBP) operators on multi-block structured grids with simultaneous
approximation terms (SATs) to enforce block interface coupling and boundary conditions.
The discrete equations are solved iteratively with an inexact-Newton method, while the linear
system at each Newton iteration is solved using the flexible Krylov
subspace iterative method GMRES with an approximate-Schur parallel preconditioner. The algorithm is thoroughly verified and validated, highlighting the
correspondence of the current algorithm with several established flow solvers.
The solution for a transonic flow over a wing on a mesh of medium density (15 million nodes) shows good agreement with experimental results.
Using 128 processors, deep convergence is obtained in under 90 minutes.
The solution of transonic flow over the Common Research Model wing-body geometry with
grids with up to 150 million nodes exhibits the expected grid
convergence behavior. This case was completed as part of the Fifth AIAA Drag Prediction Workshop,
with the algorithm producing solutions that compare favourably with several widely used flow solvers.
The algorithm is shown to scale well on over 6000 processors. The results demonstrate the effectiveness of the SBP-SAT
spatial discretization, which can be readily extended to high order, in combination with
the Newton-Krylov-Schur iterative method to produce a powerful parallel algorithm for the numerical solution of
the Reynolds-averaged Navier-Stokes equations.
The algorithm can efficiently solve the flow over a range of clean geometries, making it suitable for
use at the core of an optimization algorithm.
|
Page generated in 0.0689 seconds