Spelling suggestions: "subject:"sdb"" "subject:"sdhb""
1 |
Expression of Biotinylated Multivalent Peptide Antigens in Bacteria for Rapid and Effective Generation of Single Domain Antibodies from Phage-displayed Antibody LibrariesAlturki, Norah 19 November 2012 (has links)
In the present study, two insulin-like growth factor-binding protein 7 (IGFBP7) C-terminal-peptides were expressed as fusion proteins to bacterial verotoxin pentamerization domain as shown by Western blotting, ELISA and mass spectroscopy. Both in vivo-biotinylated recombinant products were purified from bacterial lysates by IMAC and used directly for panning along with the recombinant IGFBP7 protein using the LAC-M Camelidae naïve single domain antibody (sdAb) library. Target-specific sdAbs to both parental protein and peptide fusions were identified by phage ELISA. Twelve different clones were isolated by phage-ELISA screening and their sdAb genes were sequenced. Soluble sdAbs and their pentameric formats were expressed in TG1 E. coli, purified by IMAC and characterized by ELISA and SPR. Several sdAbs are currently under study, however anti-IGFBP7 (P12/M12) was extensively characterized and exhibited promising anti-tumorigenic effect on PANC-1 cell lines by blocking IGFBP7 promoting activity. This study provides the basis for developing a novel imaging/therapeutic reagent for targeting and treating brain tumor angiogenesis in early stages of tumorogenesis and can also be used as a molecular tool to monitor the degree of angiogenesis in gliomas which may help to improve the clinical management of brain tumors.
|
2 |
Development of Nanobodies to Image Synaptic Proteins in Super-Resolution MicroscopyMaidorn, Manuel 15 November 2017 (has links)
No description available.
|
3 |
Expression of Biotinylated Multivalent Peptide Antigens in Bacteria for Rapid and Effective Generation of Single Domain Antibodies from Phage-displayed Antibody LibrariesAlturki, Norah January 2012 (has links)
In the present study, two insulin-like growth factor-binding protein 7 (IGFBP7) C-terminal-peptides were expressed as fusion proteins to bacterial verotoxin pentamerization domain as shown by Western blotting, ELISA and mass spectroscopy. Both in vivo-biotinylated recombinant products were purified from bacterial lysates by IMAC and used directly for panning along with the recombinant IGFBP7 protein using the LAC-M Camelidae naïve single domain antibody (sdAb) library. Target-specific sdAbs to both parental protein and peptide fusions were identified by phage ELISA. Twelve different clones were isolated by phage-ELISA screening and their sdAb genes were sequenced. Soluble sdAbs and their pentameric formats were expressed in TG1 E. coli, purified by IMAC and characterized by ELISA and SPR. Several sdAbs are currently under study, however anti-IGFBP7 (P12/M12) was extensively characterized and exhibited promising anti-tumorigenic effect on PANC-1 cell lines by blocking IGFBP7 promoting activity. This study provides the basis for developing a novel imaging/therapeutic reagent for targeting and treating brain tumor angiogenesis in early stages of tumorogenesis and can also be used as a molecular tool to monitor the degree of angiogenesis in gliomas which may help to improve the clinical management of brain tumors.
|
4 |
Isolation and Characterization of Anti-SLP Single Domain Antibodies for the Therapy of C. difficile InfectionKandalaft, Hiba 23 January 2012 (has links)
Clostridium difficile is the leading cause of death from gastrointestinal infections in Canada. Current antiobiotic treatment is non-ideal due to the high incidence of relapse and the rise in hyper-virulent antibiotic-resistant strains. Surface layer proteins (SLPs) cover the entire bacterial surface and mediate adherence to host cells. Passive and active immunization against SLPs greatly enhances survival in hamsters, suggesting that antibody-mediated bacterial neutralization may be an effective alternative therapeutic strategy. Using a recombinant-antibody phage display library, and SLPs from strain QCD 32g58 as bait antigen, we isolated and extensively characterized 11 SLP-specific recombinant single-domain antibodies (sdAbs), in terms of affinity and specificity, intrinsic stability, and ability to inhibit cell motility. Several sdAbs exhibit promising characteristics for a potential oral therapeutic based on their high affinity, high thermal stability, and resistance to pepsin digestion. Our study provides the basis of a proof-of-principle model with which to develop specific, broadly neutralizing and intrinsically stable antibodies for the oral therapy of C. difficile infections, as an alternative to conventional antibiotic treatment.
|
5 |
Isolation and Characterization of Anti-SLP Single Domain Antibodies for the Therapy of C. difficile InfectionKandalaft, Hiba 23 January 2012 (has links)
Clostridium difficile is the leading cause of death from gastrointestinal infections in Canada. Current antiobiotic treatment is non-ideal due to the high incidence of relapse and the rise in hyper-virulent antibiotic-resistant strains. Surface layer proteins (SLPs) cover the entire bacterial surface and mediate adherence to host cells. Passive and active immunization against SLPs greatly enhances survival in hamsters, suggesting that antibody-mediated bacterial neutralization may be an effective alternative therapeutic strategy. Using a recombinant-antibody phage display library, and SLPs from strain QCD 32g58 as bait antigen, we isolated and extensively characterized 11 SLP-specific recombinant single-domain antibodies (sdAbs), in terms of affinity and specificity, intrinsic stability, and ability to inhibit cell motility. Several sdAbs exhibit promising characteristics for a potential oral therapeutic based on their high affinity, high thermal stability, and resistance to pepsin digestion. Our study provides the basis of a proof-of-principle model with which to develop specific, broadly neutralizing and intrinsically stable antibodies for the oral therapy of C. difficile infections, as an alternative to conventional antibiotic treatment.
|
6 |
Isolation and Characterization of Anti-SLP Single Domain Antibodies for the Therapy of C. difficile InfectionKandalaft, Hiba January 2012 (has links)
Clostridium difficile is the leading cause of death from gastrointestinal infections in Canada. Current antiobiotic treatment is non-ideal due to the high incidence of relapse and the rise in hyper-virulent antibiotic-resistant strains. Surface layer proteins (SLPs) cover the entire bacterial surface and mediate adherence to host cells. Passive and active immunization against SLPs greatly enhances survival in hamsters, suggesting that antibody-mediated bacterial neutralization may be an effective alternative therapeutic strategy. Using a recombinant-antibody phage display library, and SLPs from strain QCD 32g58 as bait antigen, we isolated and extensively characterized 11 SLP-specific recombinant single-domain antibodies (sdAbs), in terms of affinity and specificity, intrinsic stability, and ability to inhibit cell motility. Several sdAbs exhibit promising characteristics for a potential oral therapeutic based on their high affinity, high thermal stability, and resistance to pepsin digestion. Our study provides the basis of a proof-of-principle model with which to develop specific, broadly neutralizing and intrinsically stable antibodies for the oral therapy of C. difficile infections, as an alternative to conventional antibiotic treatment.
|
Page generated in 0.0334 seconds