1 |
Victim Localization Using RF-signals and Multiple Agents in Search & RescueSundqvist, Jacob, Ekskog, Jonas January 2015 (has links)
A common problem in existing Search And Rescue (SAR) systems is that they must be activated by the missing person in order to work. This requires an awareness of the the risk of becoming distressed, which in many cases is not feasible. Furthermore, most of the localization systems require specialized hardware.In this thesis, the victim is assumed to wear a cellphone that could be located using readily available consumer electronics. A method of estimating the position of a transmitter, given radio signal measurements at different locations, is developed and verified with real and simulated data. A proof-of-concept system is built in which several users can jointly collect received signal strength data at different locations using mobile phones. The system analyzes the data in real-time and guides the users in the search by estimating the origin of the signal.An outdoor field test is conducted in which the searchers using the system are able to locate the hidden target phone without prior knowledge regarding the position. We are able to localize the victim with an accuracy of 10-20 meters in a timely manner using android smartphones. This shows the potential of a similar system in \abbrSAR scenarios. However, more work is needed to make the system viable in real scenarios and to remove some of the delimitations of the current implementation.
|
2 |
Thermal human detection for Search & Rescue UAVs / Termisk människodetektion för sök- och räddnings UAVsWiklund-Oinonen, Tobias January 2022 (has links)
Unmanned Aerial Vehicles (UAVs) could play an important role in Search & Rescue (SAR) operations thanks to their ability to cover large, remote, or inaccessible search areas quickly without putting any personnel at risk. As UAVs are becoming autonomous, the problem of identifying humans in a variety of conditions can be solved with computer vision implemented with a thermal camera. In some cases, it would be necessary to operate with one or several small, agile UAVs to search for people in dense and narrow environments, where flying at a high altitude is not a viable option. This could for example be in a forest, cave, or a collapsed building. A small UAV has a limitation in carrying capacity, which is why this thesis aimed to propose a lightweight thermal solution for human detection that could be applied on a small SAR-UAV for operation in dense environments. The solution included a Raspberry Pi 4 and a FLIR Lepton 3.5 thermal camera in terms of hardware, which were mainly chosen thanks to their small footprint regarding size and weight, while also fitting within budget restrictions. In terms of object detection software, EfficentDet-Lite0 in TensorFlow Lite format was incorporated thanks to good balance between speed, accuracy, and resource usage. An own dataset of thermal images was collected and trained upon. The objective was to characterize disturbances and challenges this solution might face during a UAV SAR-operation in dense environments, as well as to measure how the performance of the proposed platform varied with increasing amount of environmental coverage of a human. This was solved by conducting a literature study, an experiment in a replicated dense environment and through observations of the system behavior combined with analysis of the measurements. Disturbances that affect a thermal camera in use for human detection were found to be a mixture of objective and subjective parameters, which formed a base of what type of phenomena to include in a diverse thermal dataset. The results from the experiment showed that stable and reliable detection performance can be expected up to 75% vegetational coverage of a human. When fully covered, the solution was not reliable when trained on the dataset used in this thesis. / Obemannade drönare (UAVs) kan spela en viktig roll i sök- och räddningsuppdrag (SAR) tack vare deras förmåga att snabbt täcka stora, avlägsna eller otillgängliga sökområden utan att utsätta personal för risker. För autonoma UAVs kan problemet med att identifiera människor i en mängd olika förhållanden lösas med datorseende implementerat tillsammans med en värmekamera. I vissa fall kan det vara nödvändigt att operera med en eller flera små, smidiga UAVs för att söka efter människor i täta och trånga miljöer, där flygning på hög höjd inte är ett genomförbart alternativ. Det kan till exempel vara i en skog, grotta eller i en kollapsad byggnad. En liten UAV har begränsad bärförmåga, vilket är varför denna avhandling syftade till att föreslå en lättviktslösning för mänsklig detektering med värmekamera som skulle kunna appliceras på en liten SAR-UAV för drift i täta miljöer. Lösningen inkluderade Raspberry Pi 4 och en FLIR Lepton 3.5 värmekamera gällande hårdvara, tack vare liten formfaktor och liten vikt, samtidigt som de passade inom budgetramen. Gällande detekterings-mjukvara användes EfficentDet-Lite0 i TensorFlow Lite-format tack vare en bra balans mellan hastighet, noggrannhet och resursanvändning. En egen uppsättning av värmebilder samlades in och tränades på. Målet var att identifiera vilka störningar och utmaningar som denna lösning kan påträffa under en sökoperation med UAVs i täta miljöer, samt att mäta hur prestandan för den föreslagna plattformen varierade när täckningsgraden av en människa ökar p.g.a. omgivningen. Detta löstes genom att genomföra en litteraturstudie, ett experiment i en replikerad tät miljö och genom observationer av systemets beteende kombinerat med analys av mätningarna. Störningar som påverkar en värmekamera som används för mänsklig detektion visade sig vara en blandning av objektiva och subjektiva parametrar, vilka utgjorde en bas för vilka typer av fenomen som skulle inkluderas i en mångsidig kollektion med värmebilder. Resultaten från experimentet visade att stabil och pålitlig detekteringsprestanda kan förväntas upp till 75% täckningsgrad av en människa p.g.a. vegetation. När människan var helt täckt var lösningen inte tillförlitlig när den var tränad på kollektionen som användes i denna avhandling.
|
3 |
Optimal UAV Hangar Locations for Emergency Services Considering Restricted AreasBraßel, Hannes, Zeh, Thomas, Fricke, Hartmut, Eltner, Anette 12 August 2024 (has links)
With unmanned aerial vehicle(s) (UAV), swift responses to urgent needs (such as search and rescue missions or medical deliveries) can be realized. Simultaneously, legislators are establishing so-called geographical zones, which restrict UAV operations to mitigate air and ground risks to third parties. These geographical zones serve particular safety interests but they may also hinder the efficient usage of UAVs in time-critical missions with range-limiting battery capacities. In this study, we address a facility location problem for up to two UAV hangars and combine it with a routing problem of a standard UAV mission to consider geographical zones as restricted areas, battery constraints, and the impact of wind to increase the robustness of the solution. To this end, water rescue missions are used exemplary, for which positive and negative location factors for UAV hangars and areas of increased drowning risk as demand points are derived from open-source georeferenced data. Optimum UAV mission trajectories are computed with an A* algorithm, considering five different restriction scenarios. As this pathfinding is very time-consuming, binary occupancy grids and image-processing algorithms accelerate the computation by identifying either entirely inaccessible or restriction-free connections beforehand. For the optimum UAV hangar locations, we maximize accessibility while minimizing the service times to the hotspots, resulting in a decrease from the average service time of 570.4 s for all facility candidates to 351.1 s for one and 287.2 s for two optimum UAV hangar locations.
|
Page generated in 0.0831 seconds