1 |
Indoor secondary organic aerosol formation : influence of particle controls, mixtures, and surfacesWaring, Michael Shannon 22 October 2009 (has links)
Ozone (O₃) and terpenoids react to produce secondary organic aerosol (SOA). This work explored novel ways that these reactions form SOA indoors, with five
investigations, in two categories: investigations of (i) the impacts of particle controls on
indoor SOA formation, and (ii) two fundamental aspects of indoor SOA formation.
For category (i), two investigations examined the particle control devices of ion
generators, which are air purifiers that are ineffective at removing particles and emit
ozone during operation. With a terpenoid source present (an air freshener), ion
generators acted as steady-state SOA generators, both in a 15 m³ chamber and 27 m³
room. The final investigation in category (i) modeled how heating, ventilating, and air-conditioning
(HVAC) systems influence SOA formation. Influential HVAC parameters
were flow rates, particle filtration, and indoor temperature for residential and commercial
models, as well as ozone removal by particle-laden filters for the commercial model.
For category (ii), the first investigation measured SOA formation from ozone
reactions with single terpenoids and terpenoid mixtures in a 90 L Teflon-film chamber, at
low and high ozone concentrations. For low ozone, experiments with only d-limonene
yielded the largest SOA number formation, relative to other mixtures, some of which had
three times the effective amount of reactive terpenoids. This trend was not observed for high ozone experiments, and these results imply that ozone-limited reactions with d-limonene
form byproducts with high nucleation potential. The second investigation in category (ii) explored SOA formation from ozone
reactions with surface-adsorbed terpenoids. A model framework was developed to
describe SOA formation due to ozone/terpenoid surface reactions, and experiments in a
283 L chamber determined the SOA yield for ozone/d-limonene surface reactions. The
observed molar yields were 0.14–0.16 over a range of relative humidities, and lower relative humidity led to higher SOA number formation from surface reactions. Building materials on which ozone/d-limonene surface reactions are predicted to lead to
substantial SOA formation are those with initially low surface reactivity, such as glass,
sealed materials, or metals. The results from category (ii) suggest significant, previously unexplored mechanisms of SOA number formation indoors. / text
|
2 |
Toward the Complete Characterization of Atmospheric Organic Particulate Matter: Derivatization and Two-Dimensional Comprehensive Gas Chromatography/Time of Flight Mass Spectrometry as a Method for the Determination of Carboxylic AcidsBoris, Alexandra Jeanne 01 January 2012 (has links)
Understanding the composition of atmospheric organic particulate matter (OPM) is essential for predicting its effects on climate, air quality, and health. However, the polar oxygenated fraction (PO-OPM), which includes a significant mass contribution from carboxylic acids, is difficult to speciate and quantitatively determine by current analytical methods such as gas chromatography-mass spectrometry (GC-MS). The method of chemical derivatization and two-dimensional GC with time of flight MS (GC×GC/TOF-MS) was examined in this study for its efficacy in: 1) quantifying a high percentage of the total organic carbon (TOC) mass of a sample containing PO-OPM; 2) quantitatively determining PO-OPM components including carboxylic acids at atmospherically relevant concentrations; and 3) tentatively identifying PO-OPM components. Two derivatization reagent systems were used in this study: BF₃/butanol for the butylation of carboxylic acids, aldehydes, and acidic ketones, and BSTFA for the trimethylsilylation (TMS) of carboxylic acids and alcohols. Three α-pinene ozonolysis OPM filter samples and a set of background filter samples were collected by collaborators in a University of California, Riverside environmental chamber. Derivatization/GC×GC TOF-MS was used to tentatively identify some previously unidentified α-pinene ozonolysis products, and also to show the characteristics of all oxidation products determined. Derivatization efficiencies as measured were 40-70% for most butyl derivatives, and 50-58% for most trimethylsilyl derivatives. A thermal optical method was used to measure the TOC on each filter, and a value of the quantifiable TOC mass using a gas chromatograph was calculated for each sample using GC×GC separation and the mass-sensitive response of a flame ionization detector (FID). The TOC quantified using TMS and GC×GC-FID (TMS/TOCGC×GC FID) accounted for 15-23% of the TOC measured by the thermal-optical method. Using TMS and GC×GC/TOF-MS, 8.85% of the thermal optical TOC was measured and 48.2% of the TMS/TOCGC×GC-FID was semi-quantified using a surrogate standard. The carboxylic acids tentatively identified using TMS and GC×GC/TOF-MS accounted for 8.28% of the TOC measured by thermal optical means. GC×GC TOF-MS chromatograms of derivatized analytes showed reduced peak tailing due in part to the lesser interactions of the derivatized analytes with the stationary phase of the chromatography column as compared to the chromatograms of underivatized samples. The improved peak shape made possible the greater separation, quantification, and identification of high polarity analytes. Limits of detection using derivatization and GC×GC/TOF-MS were μL injected for a series of C2-C6 di-acids, cis-pinonic acid, and dodecanoic acid using both butylation and TMS. Derivatization with GC×GC/TOF-MS was therefore effective for determining polar oxygenated compounds at low concentrations, for determining specific oxidation products not previously identified in OPM, and also for characterizing the probable functional groups and structures of α-pinene ozonolysis products.
|
3 |
Regional-scale land--climate interactions and their impacts on air quality in a changing climateJiang, Xiaoyan, doctor of geological sciences 09 February 2011 (has links)
Land surface areas, which represent approximately 30% of the Earth’s surface, contribute largely to the complexity of the climate system by exchanging water, energy, momentum, and chemical materials with the overlying atmosphere. Because of the highly heterogeneous nature of the land surface and its rapid transformation due to human activities, future climate projections are less certain on regional scales than for the globe as a whole. The work presented in this dissertation is focused on a better understanding of regional-scale land–atmosphere interactions and their impacts on climate and air quality. Specifically, I concentrate my research on three typical regions in the United States (U.S.): 1) the Central U.S. (representing transition zones between arid and wet climates); 2) the Houston metropolitan region (representing a major urban area); and 3) the eastern U.S. (representing temperate forested regions). These regions are also chosen owing to the consideration of data availability.
The first study concerns the roles of vegetation phenology and groundwater dynamics in regulating evapotranspiration and precipitation over the transition zones in summer months. It is found that the warm-season precipitation in the Central U.S. is sensitive to latent heat fluxes controlled by vegetation dynamics. Groundwater enhances the persistence of soil moisture memory from rainy periods to dry periods by transferring water to upper soil layers through capillary forces. Enhancement in soil moisture facilitates vegetation persistence in dry periods, producing more evaporation to the atmosphere and resulting in enhanced precipitation, which then increases soil moisture. The second study compares the impacts of future urbanization and climate change on regional air quality. The results show that the effect of land use change on surface ozone (O3) is comparable to that of climate change, but the details differ across the domain. The third study deals with the formation and distributions of secondary organic aerosols (SOA) — a largely overlooked but potentially important component in the climate system. Under future different climate scenarios, I found that biogenic emissions — an important precursor of SOA — are expected to increase everywhere over the U.S., with the largest increase found in the southeastern U.S. and the northwestern U.S., while changes in SOA do not necessarily follow those in biogenic emissions. Other factors such as partitioning coefficients, atmospheric oxidative capability, primary organic carbon, and anthropogenic emissions also play a role in SOA formation. Direct and indirect impacts from climate change complicate the future SOA formation. / text
|
4 |
SPECIATION STUDIES FOR BIOGENIC VOLATILE ORGANIC COMPOUNDS AND SECONDARY ORGANIC AEROSOL GENERATED BY OZONOLYSIS OF VOLATILE ORGANIC COMPOUND MIXTURESAmin, Hardik Surendra 01 August 2012 (has links)
Aerosols are either emitted directly into the atmosphere or are generated in the atmosphere; the latter process forms secondary organic aerosol (SOA). One of the important sources for SOA is the oxidation of volatile organic compounds (VOCs) by OH radicals, NOx, and O3. Aerosol can be visualized as suspended solid or liquid particle which is in equilibrium with surrounding gases. The products of SOA formation is a mixture of semi volatile organic compounds and a fraction of the products are condensable under atmospheric conditions. The condensable portion of aerosol is called particulate matter (PM) and these suspended particles can range in diameter from a few nanometers to microns. PM can impact climate through direct and indirect radiative forcing and can degrade air quality by reducing visibility and causing detrimental health effects. SOA can also form indoors, which also contributes to the health risk of PM. The severe impact of PM on human health and climate drives the scientific community to investigate the volatile organic compounds (VOCs) and their potential to form SOA, as well as the factors that alter the efficiency of SOA generation and the type of products. In a similar pursuit, the focus of this dissertation is the investigation of the SOA precursors that are emitted from trees and how they vary as a function of insect infestation. Also, the role of mixtures of VOCs as SOA precursors are investigated; commercial and lab made VOC mixtures are studied for SOA generation, product analysis, and absorption characteristics of aged SOA. Chapter 1 introduces PM, VOCs present in atmosphere, SOA generation, and speciation of products generated from the ozonolysis of VOCs. The impact of PM on human health and climate are summarized. A literature survey on the VOCs that are precursors to SOA and present in the outdoor and indoor environment is presented along with factors that may lead to variability in amount of VOCs. SOA generation from direct plant emissions and consumer products is surveyed. These studies show that VOC oxidation generate SOA which is important in the atmosphere due to climate and health effects and indoors due to health effects. A summary of SOA phase partitioning theories, the reaction mechanism for the formation of products from ozonolysis of the dominant biogenic SOA precursors (monoterpenes), and the factors that affect SOA generation is presented. Chapter 2 summarizes the results obtained from a field study assessing the impact of bark beetle infestation on SOA precursor emissions from forests in the Western United States. Samples of VOCs were collected by our collaborators from healthy and bark beetle infested trees using scent traps. We solvent extracted and analyzed by gas chromatography/mass spectrometry (GC/MS) nearly four hundred scent traps. An increase in the total and the individual VOCs emitted by infested trees was measured. A statistical analysis shows significant differences between the emissions from infested and healthy trees. A perspective is provided on potential impact of bark beetle infestation on regional SOA. The majority of the laboratory experiments for SOA generation have focused on individual VOCs as the single SOA precursor. However, as demonstrated in Chapter 2 for example, in a real environment multiple VOCs co-exist. Multiple SOA precursors undergo concurrent oxidation reactions, and it is not known if the products from concurrent oxidation of multiple precursors are the same as the sum of the products from individual SOA precursors. Mass closure analysis of field samples show that a significant fraction of the chemical identity of organic PM is unknown, but the chemistry impacts the toxicity of PM. Hence, it is important to understand SOA formation from realistic SOA mixtures. Chapter 3 describes the results of the SOA generation by ozonolysis of limonene and VOC mixtures containing limonene. We use an additive approach for building a surrogate VOC mixture close in composition to a commercially-available mixture. The yield of PM as a function of VOC precursor mixture was measured with respect to VOC composition using smog chamber SOA generation and scanning mobility particle sizing. PM in the chamber was collected onto filters and extracted, and the individual products of SOA were identified and quantified by GC/MS. The condensed-phase SOA products generated during these experiments for different VOC mixtures are compared. In Chapter 4, condensed-phase products sampled from SOA generated by the ozonolysis of α pinene and VOC mixtures containing α pinene, including two fir needle essential oils, are studied by extracting filter samples and analyzing the extracts by GC/MS. The products generated from VOC mixtures are characteristic of the most dominant VOC present in the mixture i.e. either limonene or α pinene. Some mixtures show the generation of new products which are not observed for corresponding individual VOC ozonolysis and hence can be used as marker for the corresponding VOC mixture. The distribution of α-pinene SOA products changes as the composition of the SOA precursor mixture changes. In Chapter 5, the UV visible absorption characteristics of ammonium ion aged SOA are discussed. Ammonium ion aging of aerosol leads impacts the radiative properties of aerosol and has the potential to impact aerosol's role in climate change. Filter samples containing SOA generated from two mixtures with different dominant monoterpenes (α-pinene-based Siberian fir needle oil and a limonene-based air freshener) were extracted. The absorption coefficients of the extracts were measured as a function of ammonium ion aging time using UV-visible absorption spectrometry. The conclusions from all above chapters are summarized in Chapter 6.
|
5 |
CROSS PHOTOREACTION OF PYRUVIC AND GLYOXYLIC ACIDS IN MODEL AQUEOUS AEROSOLSXia, Shasha 01 January 2014 (has links)
Aerosols affect climate change, the energy balance of the atmosphere, and public health due to their variable chemical composition, size, and shape. Aerosols from natural and anthropogenic sources can be primary organic aerosols (POA), which are directly emitted to the atmosphere, or secondary organic aerosols (SOA) that are formed from chemical reactions of gas-phase precursors. At variance with the well investigated formation of SOA from gas phase precursors, the chemistry of aqueous SOAs that contribute to the total SOA budget remains unknown. Field measurements have revealed that carboxylic, dicarboxylic and oxocarboxylic acids are abundant species present in SOAs. This thesis explores the fate of two such acids, pyruvic (PA) and glyoxylic (GA) acids surrogates of the oxocarboxylic acids in the atmosphere, in their cross reaction under solar irradiation and dark thermal aging. Mixtures of complex photoproducts are identified by ion chromatography (IC) with conductivity and electrospray (ESI) mass spectrometry (MS) detection, direct ESI-MS analysis in the negative ion mode, and nuclear magnetic resonance spectroscopy (NMR) analysis including one-dimensional (1H- and 13C-NMR) and two-dimensional techniques such as gradient correlation spectroscopy (gCOSY) and heteronuclear single quantum correlation (HSQC). A reaction mechanism for the cross reaction is provided based on all experimental observations.
|
6 |
Characterization of Atmospheric Aerosols in Kathmandu, New Hampshire, and Texas: Carbonaceous, Isotopic, and Water-soluble Organic CompositionJanuary 2011 (has links)
To improve the understanding of aerosol composition, sources, and spatial and temporal variations, atmospheric aerosols were characterized in three locations. Ambient aerosols were characterized using 24-hour samples collected from Kathmandu, Nepal (urban), New Hampshire (semi-rural) and Houston (urban). Results are reported in the main chapters. Chamber studies of secondary organic aerosols (SOA) formation from polycyclic aromatic hydrocarbons (PAHs) and the effects of in-situ SOA formation on atmospheric mercury oxidation are described in the appendices. Carbonaceous, ionic, and isotopic species in aerosols from Kathmandu identified local primary emissions, most likely vehicular exhaust as the most important aerosol sources. Carbonaceous aerosols collected in Kathmandu (24.5 μg C m -3 ) were much larger than those in New Hampshire (3.74 μg C m -3 ) during winter. Stable carbon isotope in aerosols of Kathmandu and New Hampshire were similar (Δδ 13 C ∠ 0.5[per thousand]) while stable nitrogen isotope were much lower in aerosols of Kathmandu (Δδ 15 N = 8.3[per thousand]). Aerosols in New Hampshire exhibited a large seasonal variation for carbonaceous aerosols, stable nitrogen isotope, and the aromatic fraction of water-soluble organic carbon (WSOC). Pure aliphatics (H-C) were the dominant functional group in WSOC. Results illustrate the importance of secondary aerosol sources throughout the year, with enhanced importance of primary sources during winter. Stable carbon isotope values suggest a consistent isotopic signature of carbonaceous aerosol sources, while the nitrogen isotope values indicate the variable nitrogenous sources and the strong influence of meteorological parameters (temperature and relative humidity) on nitrogen isotope fractionation. Characteristics of methoxyphenols (lignin macropolymers) in the ambient aerosols are reported for the first time using CuO oxidation method. The study illustrates the use of lignin oxidation products (LOPs) in aerosols as potential tracers of primary biological aerosol particles (PBAP). The methoxyphenols identified soil organic matter and altered woody angiosperms, with minor influence from soft tissues and gymnosperms as the important PBAP sources in mainly coarse particles in Houston atmosphere. Solvent-extracted methoxyphenols (lignin monomers) and anhydrosugars (levoglucosan, mannosan, and galactosan) in aerosols were either absent or very small, suggesting very limited biomass burning influence with any trace-level presence originating from long-range transport.
|
7 |
Laboratory Aerosol Kinetics Studies of the Hydrolysis Reaction of N2O5 Using a Flow Tube Coupled to a New Chemical Ionization Mass SpectrometerEscorcia, Egda Nadyr 26 July 2010 (has links)
The hydrolysis reaction of N2O5 was investigated at room temperature on two aerosol types using a flow tube coupled to a newly built Chemical Ionization Mass Spectrometer (CIMS). This instrument was fully constructed and optimized during this research period, as well as employed to conduct one of two aerosol studies. The first examined the reaction on ammonium bisulphate aerosols using a new ion detection method, I-•N2O5 cluster formation, which proved to be highly advantageous over the common approach of dissociative charge transfer, yielding a sensitivity for I-•N2O5 of 0.024 Hz/pptv. The uptake coefficients at 30% and 50% relative humidity were 0.0067 ± 0.0002 and 0.0120 ±0.0014, respectively. The second study was performed using a different CIMS previously assembled in the laboratory. In this case, the reaction was investigated on secondary organic aerosols produced through the ozonolysis of α-pinene, and resulted in an uptake coefficient of 8.5x10-5 ± 7x10-6 at 0% relative humidity.
|
8 |
Laboratory Aerosol Kinetics Studies of the Hydrolysis Reaction of N2O5 Using a Flow Tube Coupled to a New Chemical Ionization Mass SpectrometerEscorcia, Egda Nadyr 26 July 2010 (has links)
The hydrolysis reaction of N2O5 was investigated at room temperature on two aerosol types using a flow tube coupled to a newly built Chemical Ionization Mass Spectrometer (CIMS). This instrument was fully constructed and optimized during this research period, as well as employed to conduct one of two aerosol studies. The first examined the reaction on ammonium bisulphate aerosols using a new ion detection method, I-•N2O5 cluster formation, which proved to be highly advantageous over the common approach of dissociative charge transfer, yielding a sensitivity for I-•N2O5 of 0.024 Hz/pptv. The uptake coefficients at 30% and 50% relative humidity were 0.0067 ± 0.0002 and 0.0120 ±0.0014, respectively. The second study was performed using a different CIMS previously assembled in the laboratory. In this case, the reaction was investigated on secondary organic aerosols produced through the ozonolysis of α-pinene, and resulted in an uptake coefficient of 8.5x10-5 ± 7x10-6 at 0% relative humidity.
|
9 |
Formation d'aérosols organiques secondaires dans l'oxydation du limonène et des méthoxyphénols : Etude de l'influence des conditions environnementales / Secondary organic aerosol formation in the oxidation of limonene and methoxyphenols : Investigation of the influence of environmental conditionsAhmad, Waed 20 March 2017 (has links)
Les modèles de chimie atmosphérique divergent fréquemment des mesures de concentrations en aérosols organiques secondaires (AOS) d'un facteur allant de 8 jusqu'à 100 parfois, et ce, dans différents environnements. Les processus de formation des AOS, encore insuffisamment compris et mal pris en compte dans les modèles ainsi que l'influence des paramètres environnementaux sur ces processus pourraient expliquer l'écart entre les concentrations d'AOS mesurées et modélisées. Dans ce contexte, ce travail se focalise en premier lieu sur la formation d'AOS dans l'ozonolyse du limonène à partir d'expériences réalisées en réacteur à écoulement (SAGE) et en chambre de simulation (LPCA). La phase particulaire a été caractérisée en termes de rendement, granulométrie, masse et seuil de nucléation des aérosols. L'influence de la présence de différents composés : butanol, toluène, acétone, acide acétique et méthylamine sur ces paramètres a été décrite et reportée ; ainsi, le rôle des intermédiaires de Criegee et des radicaux OH dans le processus de formation des AOS a été investigué. La seconde partie a consisté à étudier les AOS générés au cours de l'oxydation par les radicaux OH du 2-méthoxyphénol (guaiacol) et du 2,6-diméthoxyphénol (syringol). Les spectres IR de ces deux méthoxyphénols, des AOS issus de leur oxydation et des composés nitrés dérivés du guaiacol et du syringol ont été étudiés, expérimentalement par la spectroscopie IRTF-RTA et/ou théoriquement par des calculs DFT anharmoniques. Enfin, le caractère hygroscopique de ces aérosols a été reporté pour la première fois dans une cellule d'hydratation. / Atmospheric chemistry models frequently diverge from measurements of secondary organic aerosol (SOA) concentrations by a factor ranging from 8 to 100 in different environments. The gap between measured and modeled SOA could be explained by many formation processes that are still not well understood nor well incorporated into the models as well as the influence of environmental parameters on these processes. In this context, this research work focuses primarily on the formation of SOA in the ozonolysis of limonene through experiments carried out in a flow reactor (SAGE) and in a simulation chamber (LPCA). The particulate phase was characterized in terms of aerosol yield, size distribution, mass and nucleation threshold. The influence of the presence of different compounds : butanol, toluene, acetone, acetic acid and methylamine on these parameters has been described and reported and thus, the role of Criegee intermediates and OH radicals in SOA formation process is investigated. The second part consist of studying the SOA generated during the OH oxidation of 2-methoxyphenol (guaiacol) and 2,6-dymethoxyphenol (syringol). The IR spectra of these two methoxyphenols, the SOA formed through their oxidation and the nitro compounds derived from guaiacol and syringol have been studied experimentally by IRTF-RTA spectroscopy and/or theoretically by anharmonic DFT calculations. Finally, the hygroscopic character of these aerosols has been reported for the first time in a hydration cell.
|
10 |
Réactions photosensibilisées contribuant à la croissance et au vieillissement des aérosols atmosphériques organiques / Photosensitized reactions contributing to the growth and aging of atmospheric aerosolsAregahegn, Kifle Zeleke 04 December 2014 (has links)
L'atmosphère est un milieu hautement hétérogène contenant de la matière condensée : les aérosols. Ceux-ci sont des composants importants de l'atmosphère car ils impactent le bilan radiatif planétaire mais aussi la qualité de l'air. En particulier les aérosols organiques secondaires (AOS), produits par la transformation chimique dans l'air de nombreux composés organiques, plus ou moins volatils, représentent une fraction conséquente dans le budget global des aérosols atmosphériques pour laquelle de nombreuses incertitudes persistent. En particulier, leurs voies de formation et de transformation dans la troposphère restent très mal décrites. C'est pourquoi, cette thèse décrit principalement l'étude de trois aspects de la croissance et du vieillissement (transformation) des aérosols : caractérisation de la croissance des AOS par des processus photosensibilisés ; investigations mécanistiques du vieillissement des AOS et de la photochimie des photosensibilisateurs ; analyse chimique des composés issus du vieillissement des AOS / Aerosols are important constituents of the atmosphere and secondary organic aerosols (SOA) represent a main fraction of the organic aerosols in the total budget. This thesis mainly reports the investigation of three aspects of the growth and aging of SOA: the photosensitized SOA growth ; the mechanistic investigation of SOA aging and of the photochemistry of photosensitizers ; the analysis of the chemical composition of aged SOA. The photosensitized growth and aging processes of SOA were investigated using an aerosol flow tube coupled with various aerosol and gas sensing instruments. For further analysis of the aerosol composition and a better understanding of the formation and growth of SOA in these experiments the aerosols produced in the dark and in the light were sampled on filters at the exit of the flow tube
|
Page generated in 0.0176 seconds