• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 209
  • 74
  • 37
  • 14
  • 12
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 594
  • 207
  • 107
  • 69
  • 66
  • 55
  • 55
  • 51
  • 50
  • 46
  • 41
  • 37
  • 37
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Sedimentological, Geochemical and Isotopic Evidence for the Establishment of Modern Circulation through the Bering Strait and Depositional Environment History of the Bering and Chukchi Seas during the Last Deglaciation

Pelto, Ben M 07 November 2014 (has links)
Sea level regression during the Last Glacial Maximum exposed the Bering Land Bridge, and cut off the connection between the North Pacific and Arctic Ocean, ending the exchange of North Pacific Water through the Bering Strait. Exchange of North Pacific Water comprises a major portion of fresh water input to the Arctic Ocean, and is of vital importance to North Atlantic Deep Water formation, a vital component of Atlantic Meridional Overturning Circulation. Bering Strait throughflow thus plays an integral role in global climate stability. A suite of four cores was selected, three in the Bering Sea and one in the Chukchi Sea, to bracket the Bering Strait in order to elucidate changes in sediment delivery, productivity and regional oceanography as the Bering Land Bridge flooded and modern ocean circulation was established during the last deglaciation. The arrival of nutrient rich North Pacific Water in the Chukchi Sea is recorded around 8 ka by organic carbon isotope depletion and an increase in total organic carbon and organic nitrogen, reflecting an increasingly marine isotopic signal and increased productivity. In the Bering Sea, the early deglaciation is marked by depleted organic carbon isotopes that indicate increasing terrestrial input, and increased total organic carbon. Principal component analysis of sedimentologic, geochemical and isotopic data clearly captures discrete sediment populations that correspond to key climatic intervals, representing changes in sediment delivery, productivity and circulation during the last deglaciation. In the Bering Sea we observe that deglaciation began in earnest around 18–17 ka, but lack of confidence in our age control does not allow for a precise date. Our results suggest that modern circulation through the Bering Strait, and thus for the Bering and Chukchi Seas, was established ~8 ka. Prior to 8 ka there is an interval of sediment that appears record a possible reversal of flow through the Bering Strait corresponding to the 8.2 ka event.
412

A High-Resolution Paleoenvironmental and Paleoclimatic History of Extreme Events on the Laminated Sediment Record from Basin Pond, Fayette, Maine, U.S.A.

Miller, Daniel R 23 November 2015 (has links)
Future impacts from climate change can be better understood by placing modern climate trends into perspective through extension of the short instrumental records of climate variability. This is especially true for extreme climatic events, such as extreme precipitation and wildfires, as the period of instrumental records provides only a few examples and these have likely have been influenced by anthropogenic warming. Multi-parameter records showing the past range of climate variability can be obtained from lakes. Lakes are particularly good recorders of climate variability because sediment from the surrounding environment accumulates in lakes, making them sensitive recorders of climate variability and providing high-resolution histories of local environmental conditions in the past. In some cases, such as at Basin Pond, sediment is persevered efficiently enough to produce distinguishable annual laminations (varves) in the sedimentary record. The varved record at Basin Pond was used to construct an accurate, highly-resolved age-to-depth model over the past 300 years. Using a multi-proxy analysis, including organic biomarker analysis of molecular compounds and sedimentological features preserved in the sediment record, a history of environmental and climatic change at Basin Pond was constructed. These analyses were compared with the record of known extreme events (from instrumental measurements and historical documents), including 129 years of high-resolution precipitation and temperature meteorological data, 19 tropical systems over the past 145 years, and two known wildfire events over the past 200 years. Long-term trends in precipitation, including the increase in precipitation seen throughout the last half of the 20th century and the drought of the 1940’s, were captured in the analysis of long-chain n-alkane distributions and through varve thickness measurements obtained through X-Ray Fluorescence analysis. Furthermore, Polycyclic Aromatic Hydrocarbons (PAHs), a class of organic compounds that can be used to trace combustion activity, were found in abundance in the Basin Pond sedimentary record. Peaks in the abundances of two PAHs (retene and chrysene) and the ratio retene/(retene + chrysene) were found to be highly correlated with the known wildfire events occurring in the historical period, giving promise as using these compounds and ratio as a robust proxy for regional wildfire events in the northeastern U.S.
413

Carbon Storage in Quaternary Deposits of the Circum-Arctic Permafrost Region

Udke, Annegret January 2021 (has links)
Rapid warming in northern latitudes will lead to permafrost thaw and subsequent carbon remobilisa­tion and release to the atmosphere. To incorporate the permafrost carbon climate feedback in globalEarth System Models, it is of importance to know the carbon stored in the circum­Arctic permafrostregion as accurate and precise as possible. Whereas soil, Yedoma and delta carbon stocks are alreadyquantified, deep carbon stocks for vast areas of the current permafrost region are still unaccountedfor. The aim of this Master thesis project is to estimate the deep carbon stock (>3m) for Quaternarydeposits outside the known reservoirs. Therefore, 363 boreholes and exposures were compiled fromthe scientific literature. 244 sites provide profile descriptions (depositional environment, depth andthickness) and another 119 sites contain data to calculate carbon densities (ground ice content, coarsefraction (>1cm and/or >2mm), bulk density and total organic carbon). Data gaps were filled usinglocal, regional and global average facies values from the compiled dataset. For spatial upscaling,key regions are defined using the permafrost zone, overburden thickness and ice content. The fielddata compiled here shows disagreements with the Circum­Arctic Map of Permafrost and Ground­Iceconditions (Brown et al. 2002), which should be updated especially in thin and ice­poor regions. Atotal C stock of 1698 ±255 PgC is estimated for 3­25m in Quaternary deposits of the circum­Arcitcpermafrost region, next to the Yedoma domain (327 ­ 466 PgC, Strauss et al. 2017) and deltas (41 ­151 PgC, Hugelius et al. 2014). About 70% of the carbon is stored within 3­10m (1200 ±238 PgC).Due to a publication bias towards thick and organic­rich sediments in the literature, C stocks calcualtedhere might be overestimated. Additional to the Yedoma domain, 309 ±99 PgC are stored in ice­richdeposits of the continuous permafrost zone, a regions especially prone to thermokarst and deep carbonremobilisation. Thermokarst, thermo­fluvial erosion along rivers and coasts as well as carbon releasethrough inland water systems presents possible release mechanisms for stored carbon. The permafrostcarbon estimate determined here doubles the known carbon reservoir in the permafrost region and em­phasises the importance for possible deep carbon release with future permafrost thawing.
414

High-Resolution Investigation of Event Driven Sedimentation: Response and Evolution of the Deepwater Horizon Blowout in the Sedimentary System

Larson, Rebekka A. 01 April 2019 (has links)
This Dissertation combines the investigation of the sedimentological impacts of the Deepwater Horizon (DwH) blowout event in the deep-sea benthos, with the refinement and advancement of methods and approaches for high-resolution investigations of events preserved in sedimentary records. An approach that combined, rapid collection of cores, a continued annual time series collection of cores, and high-resolution sampling and analyses, in particular short-lived Radioisotopes (SLRad), enabled the temporal resolution required to detect the sedimentary response to the short-duration DwH event, and evaluate post-event sedimentation patterns at a comparable time scale (months). The collection of 179 sediment cores from 80 sites between the fall of 2010 and 2016 included four sites that were utilized as an annual time-series collection to define the sedimentary response to the DwH blowout event and how the sedimentary system evolved/recovered post-event. High-resolution (2mm) sub-sampling was utilized to maximize the temporal resolution of analyses and age control using SLRad. The rapid collection of cores to define the immediate benthic impact(s), as well as the use of time-sensitive indicators of the event that may degrade over time, as well as indicators for very short time scale (months) sedimentation, such as 234Thxs. 234Thxs inventories and mass accumulation rates (MAR’s) were one of the most diagnostic characteristics of the sedimentary response. The DwH blowout event led to a Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA) event that caused a depositional pulse to the seafloor. This was defined by increased sedimentation rates and the shutdown of bioturbation as indicated by 234Thxs inventories and MAR’s. The annual collection of sediment cores as a time-series allowed for continued high-resolution analyses and use of 234Thxs to determine post-event sedimentation rates and baselines on monthly time scales for direct comparison to the depositional pulse. Within ~one year sedimentation rates decreased and within three years site specific return of bioturbation occurred and sedimentation rates on monthly scale (234Thxs) stabilized. Also, within ~three years the sedimentary signature of the depositional pulse became undetectable with respect to sediment texture and composition possibly due to dilution of this indicator by mixing/bioturbation and/or compaction of the event layer. Without the use of high-resolution sampling and geochronological tools such as 234Thxs the depositional pulse would not have been detected in the sedimentary system. The continued use of these high-resolution methods allowed for further defining the magnitude of the sedimentary response to the DwH event as well as provide baseline sedimentation patterns at a monthly time scale. The annual time series defines the post-event evolution of the sedimentary system as well as the assessment of the post-depositional alterations that influence the integration and preservation of such sedimentation events in the sedimentary record. This includes the potential for re-mobilization of event sediments, potential re-exposure of ecosystems to contaminated sediments and redistribution of event sediments. Alternatively, burial and alteration of the sedimentary signature over time influences the preservation potential of sedimentation events such as DwH, with decreasing ability to detect events due to bioturbation, degradation of signature and compaction. The refinement of methodology and approaches, in particular short-lived radioisotope (SLRad) geochronology, allowed for the high-resolution determination of the sedimentary impacts of the DwH blowout event. In turn, the opportunity to investigate the DwH event in real time provided the opportunity to advance high-resolution methodologies in an applied fashion. Continued refinement of high-resolution approaches and methods, in particular geochronologies, will allow for the detection of short-duration and subtle sedimentary events in real time as well as in the sedimentary record. Through the application of such approaches and methods to real events, these methods can be further refined and assessed for their utility and limitations.
415

Sedimentary record of tectonic growth along a convergent margin: Insights from detrital zircon geochronology of Mesozoic sedimentary basins and modern rivers in south-central Alaska

Cooper R Fasulo (8067611) 02 December 2019 (has links)
<p>This study presents new detrital zircon geochronologic data from Jurassic to Cretaceous sedimentary basins and modern rivers in south-central Alaska in order to examine the sedimentary record of magmatism and tectonics associated with the Mesozoic to Cenozoic growth of the southern Alaska convergent margin. Jurassic to Cretaceous strata of the Wrangell Mountains, Nutzotin, and Wellesly basins formed coeval with the Mesozoic accretion of the Wrangellia composite terrane (WCT) to the continental margin. New detrital zircon data from the Wrangell Mountains and Nutzotin basins demonstrate that these basins were derived primarily from sources associated with the WCT, with little to no derivation from continental margin sources. Detrital zircon ages from the Wrangell Mountains and Nutzotin basins are very similar, suggesting that these basins may have initially formed in a connected retroarc basin system. New detrital zircon data from the Wellesly basin show that the basin was source chiefly from continental margin sources. These ages show that the Wellesly basin is not related to the Nutzotin basin as previously suggested, and may be genetically related to the Kahiltna basin; this suggests that ~330-390 km of post-collisional strike-slip offset occurred along the Denali Fault. Comparing our new data with a regional detrital zircon database from similar-aged depocenters shows that there is a strong provenance and temporal link between outboard and inboard depocenters, with these depocenters being sourced from the same magmatic arcs from the late Jurassic to the late Cretaceous. Our findings from these comparisons are most consistent with a scenario where the WCT was accreted to the margin along an eastward-dipping subduction zone, in contrast to recent suggestions that the accretion was the result of westward-dipping subduction. New and previously published detrital zircon ages from the Tanana, Matanuska-Susitna, and Copper River watersheds in south-central Alaska document the major magmatic episodes that occurred along the southern Alaska convergent margin. These magmatic episodes display a periodicity that is similar to documented cyclic magmatic patterns in other regions along the Cordilleran margin, suggesting similar processes may be occurring margin-wide. The magmatic record of south-central Alaska can also be compared with the magmatic record of other regions in the northern Cordillera such as the Coast Plutonic Complex in British Columbia and the western Alaska Peninsula, which shows a spatial and temporal relationship of magmatism along the entire northern Cordilleran margin.</p>
416

Utilizing the Public on Public Lands: The Application of Community Science to Monitor and Model Erosion in National Forests

Hansen, Jacob L 01 August 2020 (has links)
Unpaved forest roads are adversely affecting coldwater streams through excessive erosion and the subsequent sedimentation of adjacent waterways. To help identify areas of concern, Trout Unlimited (TU) in the Southern Appalachian region developed a Community Science initiative to gather data on sediment sources and stream-road crossings. Volunteers were recruited and trained to monitor road and trail conditions and collect and submit data using a Survey123 application on their cell phones. Analysis of the contributed data reveals statistical connections between drainage type and both erosion level and stream sedimentation. The contributed data were also included as a calibration for the lite version of the Geomorphic Road Analysis and Inventory Package (GRAIP-Lite), a GIS-based road sediment contribution model. The analysis found statistically significant differences between Basic and Calibrated models at one of two sites, and substantial increases in sediment delivery from the Alternate model at both sites.
417

INVESTIGATING EOCENE TO ACTIVE TECTONICS OF THE ALASKAN CONVERGENT MARGIN THROU GH GEOLOGIC STUDIES AND 3-D NUMERICAL MODELING

Hannah Grace Weaver (10692984) 07 May 2021 (has links)
<div> <div> <div> <p>The combination of field-based studies and numerical modeling provides a robust tool for evaluating geologic and geodynamic processes along a convergent margin. Complex and persistent tectonic activity and a novel suite of geophysical observations make the southern Alaskan convergent margin a key region to evaluate these processes through both basin analysis studies and geodynamic modeling. This conceptual approach is utilized to explore the active driving forces of surface deformation throughout southcentral Alaska, as well as the geologic record of regional Cenozoic tectonic processes. </p> <p>New sedimentologic, chronostratigraphic, and provenance data from strata that crop out within the central Alaska Range document a previously unrecognized stage of Eocene – early Miocene strike-slip basin development along the northern side of the central Denali fault system. This stage was followed by Miocene-Pliocene deformation and exhumation of the central Alaska Range, and basin development and northward sediment transport into the Tanana foreland basin. This portion of the study provides insight into Cenozoic tectonics and basin development in the central Alaska Range. </p> <p>How transpressional tectonics are manifest in the modern-day, in combination with shallow subduction processes, are not well understood for the southern Alaskan convergent margin. Simulations of the 3-D deformation of this region allow for investigation of the complex relationship between these tectonic processes and surface deformation. Results from this study display the far-field affect that strong plate coupling along the shallowly subducting Yakutat slab has on the surface deformation of southcentral Alaska. Our models also show that partitioning of this convergence is observed along the Denali fault system. Additionally, our results indicate the subducting slab is segmented into separate Pacific, Yakutat and Wrangell slab segments. This variation in slab structure exerts control on the upper plate response to shallow subduction.</p> </div> </div> </div>
418

Quantifying Riverbed Sediment Using Recreational-Grade Side Scan Sonar

Hamill, Daniel 01 August 2017 (has links)
The size and organization of bed material, bed texture, is a fundamental attribute of channels and is one component of the physical habitat of aquatic ecosystems. Multiple discipline-specific definitions of texture exist and there is not a universally accepted metric(s) to quantify the spectrum of possible bed textures found in aquatic environments. Moreover, metrics to describe texture are strictly statistical. Recreational-grade side scan sonar systems now offer the possibility of imaging submerged riverbed sediment at resolutions potentially sufficient to identify subtle changes in bed texture with minimal cost,expertise in sonar, or logistical effort. However, inferring riverbed sediment from side scan sonar data is limited because recreational-grade systems were not designed for this purpose and methods to interpret the data have relied on manual and semi-automated routines. Visual interpretation of side scan sonar data is not practically applied to large volumes of data because it is labor intensive and lacks reproducibility. This thesis addresses current limitations associated with visual interpretation with two objectives: 1) objectively quantify side scan sonar imagery texture, and 2) develop an automated texture segmentation algorithm for broad-scale substrate characterization. To address objective 1), I used a time series of imagery collected along a 1.6 km reach of the Colorado River in Marble Canyon, AZ. A statistically based texture analysis was performed on georeferenced side scan sonar imagery to identify objective metrics that could be used to discriminate different sediment types. A Grey Level Co-occurrence Matrix based texture analysis was found to successfully discriminate the textures associated with different sediment types. Texture varies significantly at the scale of ≈ 9 m2 on side scan sonar imagery on a regular 25 cm grid. A minimum of three and maximum of five distinct textures could be observed directly from side scan sonar imagery. To address objective 2), linear least squares and a Gaussian mixture modeling approach were developed and tested. Both sediment classification methods were found to successfully classify heterogeneous riverbeds into homogeneous patches of sand, gravel, and boulders. Gaussian mixture models outperformed the least squares models because they classified gravel with the highest accuracies.Additionally, substrate maps derived from a Gaussian modeling approach were found to be able to better estimate reach averaged proportions of different sediments types when they were compared to similar maps derived from multibeam sonar.
419

Reconstructing Holocene Indian Summer Monsoon Variability Using High Resolution Sediments from the Southeastern Tibet

Perello, Melanie Marie 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The Indian summer monsoon (ISM) is the dominant hydrometeorological phenomenon that provides the majority of precipitation to southern Asia and southeastern Tibet specifically. Reliable projections of ISM rainfall are critical for water management and hinge on our understanding of the drivers of the monsoon system and how these drivers will be impacted by climate change. Because instrumental climate records are limited in space and time, natural climate archives are required to understand how the ISM varied in the past in response to changes in climatic boundary climate conditions. Lake sediments are high-resolution natural paleoclimate archive that are widely distributed across the Tibetan Plateau, making them useful for investigating long-term precipitation trends and their response to climatic boundary conditions. To investigate changes in monsoon intensity during the Holocene, three lakes were sampled along an east-west transect in southeastern Tibet: Galang Co, Nir’Pa Co, and Cuobu. Paleoclimate records from each lake were developed using isotopic (leaf wax hydrogen isotopes; δ2H), sedimentological, and geochemical proxies of precipitation and lake levels. Sediments were sampled at high temporal frequencies, with most proxies resolved at decadal scales, to capture multi-decadal to millennial-scale variability in monsoon intensity and local hydroclimate conditions. The ISM was strongest in the early Holocene as evidenced by leaf-wax n-alkane δ2H at both Cuobu and Galang Co corresponding with Cuobu’s higher lake levels and effective moisture. Monsoon intensity declined at Cuobu and Galang Co around 6 ka which corresponds to reduced riverine sediment influxes at Cuobu and deeper lake levels at Galang Co. The antiphase relationship between lake levels and monsoon intensity at Galang Co is attributed to air temperatures and effective moisture, with a warmer and drier local hydroclimate driving early Holocene low lake levels. The late Holocene ISM was more variable with wet and dry periods, as seen in the Nir’Pa Co lake level and leaf wax n-alkane δ2H record. These records demonstrate coherent drivers of synoptic and local hydroclimate that account for Holocene ISM expression across the southeastern Tibetan Plateau, indicating possible drivers of future monsoon expression under climate change.
420

Sediment Supply to the South China Sea as Recorded by Sand Composition at IODP Expedition 367/368 Sites U1499 and U1500

Robinson, Caroline Mae January 2018 (has links)
No description available.

Page generated in 0.0955 seconds