Spelling suggestions: "subject:"segmentace"" "subject:"segmentada""
71 |
[pt] MAPEAMENTO DA DISTRIBUIÇÃO POPULACIONAL ATRAVÉS DA DETECÇÃO DE ÁREAS EDIFICADAS EM IMAGENS DE REGIÕES HETEROGÊNEAS DO GOOGLE EARTH USANDO DEEP LEARNING / [en] POPULATION DISTRIBUTION MAPPING THROUGH THE DETECTION OF BUILDING AREAS IN GOOGLE EARTH IMAGES OF HETEROGENEOUS REGIONS USING DEEP LEARNINGCASSIO FREITAS PEREIRA DE ALMEIDA 08 February 2018 (has links)
[pt] Informações precisas sobre a distribuição da população são reconhecidamente importantes. A fonte de informação mais completa sobre a população é o censo, cujos os dados são disponibilizados de forma
agregada em setores censitários. Esses setores são unidades operacionais de tamanho e formas irregulares, que dificulta a análise espacial dos dados associados. Assim, a mudança de setores censitários para um conjunto de células regulares com estimativas adequadas facilitaria a análise. Uma metodologia a ser utilizada para essa mudança poderia ser baseada na classificação de imagens de sensoriamento remoto para a identificação de domicílios, que é a base das pesquisas envolvendo a população. A detecção de áreas edificadas é uma tarefa complexa devido a grande variabilidade de características de construção e de imagens. Os métodos usuais são complexos e muito dependentes de especialistas. Os processos automáticos dependem de grandes bases de imagens para treinamento e são sensíveis à variação de qualidade de imagens e características das construções e de ambiente. Nesta tese propomos a utilização de um método automatizado para detecção de edificações em imagens Google Earth que mostrou bons
resultados utilizando um conjunto de imagens relativamente pequeno e com grande variabilidade, superando as limitações dos processos existentes. Este resultado foi obtido com uma aplicação prática. Foi construído um conjunto de imagens com anotação de áreas construídas para 12 regiões do Brasil. Estas imagens, além de diferentes na qualidade, apresentam grande variabilidade nas características das edificações e no ambiente geográfico. Uma prova de conceito será feita na utilização da classificação de área construída nos métodos dasimétrico para a estimação de população em gride. Ela mostrou um resultado promissor quando comparado com o método usual, possibilitando a melhoria da qualidade das estimativas. / [en] The importance of precise information about the population distribution is widely acknowledged. The census is considered the most reliable and complete source of this information, and its data are delivered
in an aggregated form in sectors. These sectors are operational units with irregular shapes, which hinder the spatial analysis of the data. Thus, the transformation of sectors onto a regular grid would facilitate such analysis. A methodology to achieve this transformation could be based on remote sensing image classification to identify building where the population lives. The building detection is considered a complex task since there is a great variability of building characteristics and on the images quality themselves. The majority of methods are complex and very specialist dependent. The automatic methods require a large annotated dataset for training and they are sensitive to the image quality, to the building characteristics, and to the environment. In this thesis, we propose an automatic method for building detection based on a deep learning architecture that uses a relative small dataset with a large variability. The proposed method shows good results when compared to the state of the art. An annotated dataset has been built that covers 12 cities distributed in different regions of Brazil. Such images not only have different qualities, but also shows a large variability on the building characteristics and geographic environments. A very important application of this method is the use of the building area classification in the dasimetric methods for the population estimation into grid. The concept proof in this application showed a promising result when compared to the usual method allowing the improvement of the quality of the estimates.
|
72 |
[pt] CARACTERIZAÇÃO DE COMPÓSITOS CIMENTÍCIOS REFORÇADOS COM FIBRAS: APRENDIZAGEM PROFUNDA, MICROTC DE RAIO X INSITU, CORRELAÇÃO DIGITAL DE VOLUME / [en] CHARACTERIZATION OF STRAIN-HARDENING CEMENT-BASED COMPOSITES: DEEP LEARNING, IN-SITU X-RAY MICROCT AND DIGITAL VOLUME CORRELATIONRENATA LORENZONI 29 December 2021 (has links)
[pt] entendimento do macro comportamento dos materiais, este trabalho apresenta
soluções inovadoras para a análise de imagens 3D obtidas por microtomografia
computadorizada de raios-X (microCT). O material estudado conhecido
pelo termo em inglês “strain-hardening cement-based composites”
ou pela abreviação SHCC é um compósito cimentício reforçado com fibras
que atinge deformações significativas através da formação de múltiplas fissuras,
estabelecendo um material cimentício com característica pseudo-dúctil.
O primeiro desafio deste trabalho foi reconhecer e quantificar as fases constituintes
nas imagens 3D de SHCC obtidas por microCT. Materiais com
estruturas complexas podem apresentar imagens em que as fases internas
não podem ser distinguidas pela técnica de limiarização clássica, exigindo
o uso de outra técnica como a segmentação por Deep Learning (DL). Portanto,
este trabalho utilizou DL como solução para esta tarefa. Desta forma,
as características de cada fases puderam ser correlacionadas ao comportamento
mecânico macro do material em ensaios de microCT in-situ. Outro
método moderno de análise de imagens 3D utilizado foi a correlação digital
de volume (em inglês, digital volume correlation - DVC). O DVC é uma
técnica que estima o campo de deformação sobre todo o volume da amostra,
correlacionando as imagens 3D nos estados descarregado e carregado.
Assim, as imagens obtidas nos ensaios de tração e compressão in-situ puderam
ter seus deslocamentos internos medidos e deformações calculadas. Em
síntese, este trabalho trouxe avanços ao campo do processamento digital e
análise de imagens 3D, aplicadas a materiais cimentícios, mas que também
podem se adaptar à análise de diversos materiais. / [en] Considering the importance of micro and mesoscale analyses to understand
the macro behavior of materials, this work brings innovative solutions
for analyzing 3D images obtained by X-ray micro-computed tomography
(microCT). The studied material was the strain-hardening cement-based
composites (SHCC), a fiber reinforced cementitious composite that achieves
significant deformations through multiple cracks formation, resulting in a
cementitious material with pseudo ductile features. The first challenge of
this work was to recognize and quantify the constituent phases in the 3D
images of SHCC obtained by microCT. Materials with complex structures
may present images in which the internal phases cannot be distinguished by
the classical thresholding technique, requiring the use of another technique
such as segmentation by Deep Learning (DL). Therefore, this work used
DL as a solution for this task. Then, the features of each phase could
be correlated to the macro mechanical behavior of the material in in-situ
microCT tests. Another modern method for analyzing 3D images used was
the digital volume correlation (DVC). DVC is a technique that estimates
full-field strain in 3D over the entire volume of the specimen by correlating
imaging volumes of the specimen in unloaded and loaded states. Thus,
the images obtained from tensile and compression in-situ tests could have
their internal displacements measured and strain calculated. In summary,
this work brought advances to the 3D image processing and analysis field,
applied to cementitious materials, but which could also adapt for the
analysis of various materials.
|
73 |
[en] DATA MINING APPLIED TO DIRECT MARKETING AND MARKET SEGMENTATION / [es] MINERACIÓN DE DATOS PARA LA SOLUCIÓN DE PROBLEMAS DE MARKETING DIRECTO Y SEGMENTACIÓN DE MERCADO / [pt] MINERAÇÃO DE DADOS APLICADA NA SOLUÇÃO DE PROBLEMAS DE MARKETING DIRETO E SEGMENTAÇÃO DE MERCADOHUGO LEONARDO COSTA DE AZEVEDO 28 August 2001 (has links)
[pt] Devido à quantidade cada vez maior de dados armazenada
pelas instituições, a área de mineração de dados tem se
tornado cada vez mais relevante e vários métodos e métodos
têm sido propostos de maneira a aumentar sua aplicabilidade
e desempenho. Esta dissertação investiga o uso de diversos
métodos e técnicas de mineração de dados na modelagem e
solução de problemas de Marketing. O objetivo do trabalho
foi fazer um levantamento de alguns métodos e técnicas de
mineração, avaliar seus desempenhos e procurar integrá-los
na solução de problemas de marketing que envolvessem
tarefas de agrupamento ou classificação. O trabalho
consistiu de quatro etapas principais: estudo sobre o
processo de descoberta de conhecimento em bancos de dados
(KDD - Knowledge Discovery in Databases); estudo sobre
Marketing e alguns problemas de Marketing de Banco de Dados
(DBM - Database Marketing) que envolvessem tarefas de
agrupamento e classificação; levantamento e estudo de
métodos e técnicas de Inteligência Computacional e
Estatística que pudessem ser empregados na solução de
alguns desses problemas; e estudos de caso. A primeira
etapa do trabalho envolveu um estudo detalhado das diversas
fases do processo de KDD: limpeza dos dados; seleção;
codificação e transformação; redução de dimensionalidade;
mineração; e pós-processamento. Na segunda etapa foram
estudados os principais conceitos de Marketing e de DBM e a
relação entre eles e o processo de KDD. Pesquisaram-se
alguns dos tipos de problemas comuns na área e escolheram-
se para análise dois que fossem suficientemente complexos e
tivessem a possibilidade de se ter acesso a alguma empresa
que fornecesse os dados e validasse a solução
posteriormente. Os casos selecionados foram um de marketing
direto e outro de segmentação de mercado. Na terceira
etapa, foram estudados os métodos de Inteligência
Computacional e Estatística usualmente empregados em
tarefas de agrupamento e classificação de dados. Foram
estudados: Redes Perceptron Multi-Camadas, Mapas Auto-
Organizáveis, Fuzzy C-Means, K-means, sistemas Neuro-Fuzzy,
Árvores de Decisão, métodos Hierárquicos de agrupamento,
Regressão Logística, Fuções Discriminantes de Fisher, entre
outros. Por fim, na última etapa, procurou-se integrar
todos os métodos e técnicas estudados na solução de dois
estudos de caso, propostos inicialmente na segunda etapa do
trabalho. Uma vez proposta a solução para os estudos de
caso, elas foram levadas aos especialistas em Marketing das
empresas para serem validadas no âmbito do negócio. Os
estudos de caso mostraram a grande utilidade e
aplicabilidade dos métodos e técnicas estudadas em
problemas de marketing direto e segmentação de mercado. Sem
o emprego dos mesmos, a solução para muitos desses
problemas tornar-se-ia extremamente imprecisa ou até mesmo
inviável. Mostraram também a grande importância das fases
iniciais de pré-processamento dos dados no processo de KDD.
Muitos desafios persistem ainda na área de mineração de
dados, como a dificuldade de modelar dados não lineares e
de manipular quantidades muito grande de dados, o que
garante um vasto campo para pesquisa nos próximos anos. / [en] The Data Mining field has received great attention lately,
due to the increasing amount of data stored by companies
and institutions. A great number of Data Mining methods
have been proposed so far, which is good but sometimes
leads to confusion. This dissertation investigates the
performance of many different methods and techniques of
Data Mining used to model and solve Marketing problems. The
goal of this research was to look for and study some data
mining methods, compare them, and try to integrate them to
solve Marketing problems involving clustering and
classification tasks. This research can be divided in four
stages: a study of the process of Knowledge Discovery in
Databases (KDD); a study about Marketing problems involving
clustering and classification; a study of some methods and
techniques of Statistics and Computational Intelligence
that could be used to solve some of those problems; and
case studies. On the first stage of the research, the
different tasks (clustering, classification, modeling, etc)
and phases (data cleansing, data selection, data
transformation, Data Mining, etc) of a KDD process were
studied in detail. The second stage involved a study of the
main concepts of Marketing and Database Marketing and their
relation to the KDD process. The most common types of
problems in the field were studied and, among them, two
were selected to be furthered analyzed as case studies. One
case was related to Direct Marketing and the other to
Market Segmentation. These two cases were chosen because
they were complex enough and it was possible to find a
company to provide data to the problem and access to their
marketing department. On the third stage, many different
methods for clustering and classification were studied and
compared. Among those methods, there were: Multilayer
Perceptrons, Self Organizing Maps, Fuzzy C-Means, K-Means,
Neuro-Fuzzy systems, Decision Trees, Hierarquical
Clustering Methods, Logistic Regression, Fisher`s Linear
Discriminants, etc Finally, on the last stage, all the
methods and techniques studied were put together to solve
the two case studies proposed earlier. Once they were
solved, their solutions were submitted to the Marketing
Department of the company who provided the data, so that
they could validate the results in the context of their
business. The case studies were able to show the large
potential of applicability of the methods and techniques
studied on problems of Market Segmentation and Direct
Marketing. Without employing those methods, it would
be very hard or even impossible to solve those problems.
The case studies also helped verify the very important
role of the data pre-processing phase on the KDD process.
Many challenges persist in the data mining field. One could
mention, for example, the difficulty to model non-linear
data and to manipulate larges amounts of data. These and
many other challenges provide a vast field of research to
be done in the next years. / [es] Debido a la cantidad cada vez mayor de datos almacenados
por las instituiciones, el área de mineración de datos há
ganado relevancia y varios métodos han sido propuestos para
aumentar su aplicabilidad y desempeño. Esta disertación
investiga el uso de diversos métodos y técnicas de
mineración de datos en la modelación y solución de
problemas de Marketing. EL objetivo del trabajo fue hacer
un levantamiento de algunos métodos y técnicas de
mineración, evaluar su desempeño e integrarlos en la
solución de problemas de marketing que involucran tareas de
agrupamiento y clasificación. EL trabajo consta de cuatro
etapas principales: estudio sobre el proceso de
descubrimiento de conocimientos en bancos de datos (KDD -
Knowledge Discovery in Databases); estudio sobre Marketing
y algunos problemas de Marketing de Banco de Datos (DBM -
Database Marketing) que incluyen tareas de agrupamientoy
clasificación; levantamiento y estudio de métodos y
técnicas de Inteligencia Computacional y Estadística que
pueden ser empleados en la solución de algunos problemas; y
por último, estudios de casos. La primera etapa del trabajo
contiene un estudio detallado de las diversas fases del
proceso de KDD: limpeza de datos; selección; codificación y
transformación; reducción de dimensionalidad; mineración; y
posprocesamento. En la segunda etapa fueron estudados los
principales conceptos de Marketing y de DBM y la relación
entre ellos y el proceso de KDD. Algunos de los tipos de
problemas comunes en la área fueron investigados,
seleccionando dos de ellos, por ser suficientemente
complejos y tener posibilidad de acceso a alguna empresa
que suministrase los datos y evaluase posteriormente la
solución. Los casos selecionados fueron uno de marketing
directo y otro de segmentación de mercado. En la tercera
etapa, se estudiaron los métodos de Inteligencia
Computacional y Estadística que son empleados usualmente en
tareas de agrupamiento y clasificación de datos. Éstos
fueron: Redes Perceptron Multicamada, Mapas
Autoorganizables, Fuzzy C-Means, K-means, sistemas Neuro-
Fuzzy, Árboles de Decisión, métodos Jerárquicos de
agrupamiento, Regresión Logística, Fuciones Discriminantes
de Fisher, entre otros. En la última etapa, se integraron
todos los métodos y técnicas estudiados en la solución de
dos estudios de casos, propuestos inicialmente en la
segunda etapa del trabajo. Una vez proposta la solución
para el estudios de casos, éstas fueron evaluadas por los
especialistas en Marketing de las empresas. Los estudios de
casos mostraron la grande utilidad y aplicabilidad de los
métodos y técnicas estudiadas en problemas de marketing
directo y segmentación de mercado. Sin el empleo de dichos
métodos, la solución para muchos de esos problemas sería
extremadamente imprecisa o hasta incluso inviáble. Se
comprobó también la gran importancia de las fases iniciales
de preprocesamiento de datos en el proceso de KDD. Existen
todavía muchos desafíos en el área de mineración de datos,
como la dificuldad de modelar datos no lineales y de
manipular cantidades muy grandes de datos, lo que garantiza
un vasto campo de investigación
|
74 |
[en] CONVOLUTIONAL NETWORKS APPLIED TO SEMANTIC SEGMENTATION OF SEISMIC IMAGES / [pt] REDES CONVOLUCIONAIS APLICADAS À SEGMENTAÇÃO SEMÂNTICA DE IMAGENS SÍSMICASMATEUS CABRAL TORRES 10 August 2021 (has links)
[pt] A partir de melhorias incrementais em uma conhecida rede neural convolucional (U-Net), diferentes técnicas são avaliadas quanto às suas performances na tarefa de segmentação semântica em imagens sísmicas. Mais especificamente, procura-se a identificação e delineamento de estruturas salinas no subsolo, o que é de grande relevância na indústria de óleo e gás para a exploração de petróleo em camadas pré-sal, por exemplo. Além disso, os desafios apresentados no tratamento destas imagens sísmicas se assemelham em muito aos encontrados em tarefas de áreas médicas como identificação de tumores e segmentação de tecidos, o que torna o estudo da tarefa em questão ainda mais valioso.
Este trabalho pretende sugerir uma metodologia adequada de abordagem à tarefa e produzir redes neurais capazes de segmentar imagens sísmicas com bons resultados dentro das métricas utilizadas. Para alcançar estes objetivos, diferentes estruturas de redes, transferência de aprendizado e técnicas de aumentação de dados são testadas em dois datasets com diferentes níveis de complexidade. / [en] Through incremental improvements in a well-known convolutional neural network (U-Net), different techniques are evaluated regarding their performance on the task of semantic segmentation of seismic images. More specifically, the objective is the better identification and outline of subsurface salt structures, which is a task of great relevance for the oil and gas industry in the exploration of pre-salt layers, for example. Besides that application, the challenges imposed by the treatment of seismic images also resemble those found in medical fields like tumor detection and tissue segmentation, which makes the study of this task even more valuable. This work seeks to suggest a suitable methodology for the task and to yield neural networks that are capable of performing semantic segmentation of seismic images with good results regarding specific metrics. For that purpose, different network structures, transfer learning and data augmentation techniques are applied in two datasets with different levels of complexity.
|
Page generated in 0.0509 seconds