• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo celular, bioquímico e biofísico da enzima selenofosfato sintetase de Naegleria gruberi / Biochemical, biophysical and cellular studies of selenophosphate synthetase from Naegleria gruberi

Bellini, Natalia Karla 16 July 2015 (has links)
O microrganismo alvo deste estudo pertence ao gênero Naegleria, que compreende amebas de vida livre amplamente distribuídas ao redor do mundo. Estas possuem estratégias de adaptação em condições de temperatura e pH que envolvem a diferenciação das células para as formas flagelada e cística. A via de biossíntese e incorporação do aminoácido selenocisteína (Sec, U) em N. gruberi foi descrita e, devido à incorporação co-traducional deste aminoácido em resposta a um códon UGA em fase de leitura, possui diversos fatores específicos que tornam a via alvo de estudos moleculares. Dentre os genes identificados, destaca-se o de selenofosfato sintetase (SPS), uma proteína funcionalmente dimérica envolvida na catálise da conversão de seleneto e adenosina 5´-trifosfato (ATP) em selenofosfato, essencial à síntese de Sec. Diferindo das SPSs homólogas, em N. gruberi a proteína (NgSPS2) é codificada em fusão N-terminal com uma metiltransferase e totaliza 737 aminoácidos. Esta descoberta motivou os objetivos da pesquisa baseada na investigação celular de NgSPS2 nativa nas três diferentes formas de vida de N. gruberi através de ensaios imunoenzimáticos, e a caracterização bioquímica e biofísica da proteína recombinante. A análise dos resultados obtidos por Western blot indicaram que NgSPS2, in vivo, apresenta os dois domínios metiltransferase e SPS separados após a tradução para uma cultura amebóide e, após alcançar a diferenciação de cada uma das formas isoladamente, este resultado se confirmou também para cistos e flagelados. A investigação de N. gruberi em cultura indica o aumento na atividade da via de síntese de selenoproteínas na presença de selênio conferindo resistência às condições de estresse oxidativo. A caracterização bioquímica do domínio C-terminal de NgSPS2, por cromatografia de exclusão molecular analítica e eletroforese não desnaturante, revelou predominância de dímeros em solução, coerente com SPSs homólogas. Os testes de cristalização não resultaram na obtenção de cristais, porém a proteólise limitada permitiu selecionar tripsina como potencial para a clivagem do N terminal do N terminal flexível. A conservação dos resíduos de aminoácidos funcionais em NgSPS2.CTD e seu comportamento em solução confirmam a obrigatoriedade da união de cada monômero e, por isso o domínio metiltransferase adicional pode ser desfavorável à montagem do dímero e in vivo a fusão é desfeita após a tradução. / The target microorganism of the present study belongs to the Naegleria genus. This genus includes free life amoebas widely distributed around the world that, in order to survive in bad temperature and pH environments, developed an adaptive strategy consisting of cells differentiation to flagellate and cystic form. The biosynthesis and incorporation of selenocysteine amino acid (Sec, U) in N. gruberi has been described and, because of the co-translational incorporation of this amino acid in response to a UGA codon during the reading step, this process has several specific factors which make it a target for molecular studies. Among the identified genes, we can highlight the one which encodes the selenophosphate synthetase that is involved in the catalytic conversion of selenite and adenosine triphosphate into selenium phosphate, a necessary step to the Sec synthesis that uses selenide and ATP to produce selenophosphate. SPS from N.gruberi is encoded with an methyltransferase N-terminal fused with the typical SPS C-terminal domain, an open read frame that contains 2211 nucleotides encoding 737 amino acids. This discovery has motivated the initial aims of this project, based on the cellular investigation of SPS2, native on the three different form lifes of N. gruberi, through immunoenzymatic assays, besides a study with the recombinant protein to clarify the biochemistry and biophysics features of NgSPS2. The results indicated that the protein do not keep both domains fused after the translation process, suggesting that they need to be separated to perform their biological function. The investigation of the N. gruberi culture revealed that the cells become less sensitive to stress agent in the presence of selenium, which seems to be correlated with the increasing activity of the selenoprotein synthesis. The biochemistry characterization of the NgSPS2 C-terminal domain, using size exclusion chromatography and electrophoresis under non-denaturing conditions revealed the predominance of dimers in solution according with the typical homologous SPS oligomeric state. The crystallization tests have not resulted in crystal growth; however, the limited proteolysis may be an alternative to optimize the crystallization process. These studies may enlarge the knowledge about the biosynthesis of Sec. in N. gruberi.
2

Estudos estruturais e funcionais da Selenofosfato Sintetase de Trypanosoma brucei e Leishmania major / Structural and functional studies of Selenophosphate Synthetase from Trypanosoma brucei and Leishmania major

Faim, Lívia Maria 24 April 2014 (has links)
A síntese e incorporação de Selenocisteína em selenoproteínas ocorre co tradicionalmente direcionado pelo códon de terminação UGA. Uma maquinaria única de enzimas e fatores proteicos é necessária para síntese de selenocisteína e decodificação do códon UGA de terminação da tradução para inserção de selenocisteína. Dentre as enzimas envolvidas, está a Selenonofosfato sintetase (SPS2), responsável por catalisar a ativação de seleneto com adenosina 5 trifosfato (ATP) para gerar selenofosfato, o doador de selênio reativo que é substrato da próxima enzima da via para formação de selenocisteína. Estudos recentes identificaram a presença da via de biossíntese de selenocisteína em parasitas kinetoplastidas e subsequentemente a proteína SPS2 de Trypanosoma brucei e Leishmania major foram caracterizadas. Entretanto, trabalhos estruturais e funcionais das enzimas permaneceram não reportados. Dessa forma, este trabalho teve seu foco estabelecido na realização de estudos estruturais e funcionais da SPS2 de T. brucei e L. major. Para caracterização da proteína em solução foram empregadas as técnicas de cromatografia de exclusão de tamanho, eletroforese em gel nativo, espalhamento dinâmico de luz (DLS), espalhamento de Raios X a baixo ângulo (SAXS) e ultracentrifugação analítica (AUC). Os resultados obtidos revelaram uma mistura de dímeros e tetrâmeros em solução para ambas SPS2 com predominância de dímeros. Muitas estratégias de cristalização e melhorias na difração foram utilizadas para obtenção de cristais proteicos apropriados para determinação da estrutura cristalográfica das SPS2. Cristais de SPS2 de T. brucei inteira e SPS2 de L. major com N-terminal truncado foram obtidos. Porém, somente a estrutura cristalográfica da proteína SPS2 de Leishmania major com o N-terminal truncado a 1,9 Å de resolução foi determinada. Estudos comparativos entre esta estrutura e outras selenofosfato sintetases mostrou a mesma organização estrutural entre elas. Experimento de complementação funcional das SPS2 truncadas e mutadas pontualmente revelou três resíduos localizados no N-terminal como fundamentais para atividade da SPS2 (Leu33, Thr34; Tyr36 e Leu37, Thr38; Tyr40 para SPS2 de T. brucei e L.major, respectivamente). Análise mutacional baseada nas estruturas cristalográficas indicou que estes resíduos podem estar envolvidos no mecanismo de entrega do selenofosfato para a próxima enzima da via, a Selenocisteína sintase. Isto poderia evitar a difusão de compostos reativos de selênio, resultando em uma eficiência na síntese de selenocisteína. Os resultados aqui apresentados forneceram informações importantes e novas perspectivas a respeito do mecanismo de catalise da enzima selenofosfato sintetase na via de síntese de selenocisteína. / The synthesis and incorporation of selenocysteine in selenoproteins occurs cotranslationally directed by the UGA stop codon. An unique machine of enzymes and protein factors are required for selenocysteine synthesis and decoding of UGA translation termination codon for the insertion of selenocysteine. Among the enzymes involved, Selenonofosfato synthetase (SPS2) is the responsible for catalyzing the activation of selenite with adenosine 5\' - triphosphate (ATP) to generate selenophosphate, the reactive selenium donor, which is substrate of the next pathway enzyme to formation of selenocysteine. Recent studies have identified the presence of selenocysteine biosynthesis in parasites Kinetoplastidas and subsequently, the SPS2 protein of Trypanosoma brucei and Leishmania major have been characterized, however, structural and functional studies of enzymes remain not reported. Thus, this present work report biochemical and biophysical studies of SPS2. To characterize the protein in solution, there were employed the techniques of size exclusion chromatography, native gel electrophoresis, dynamic light scattering (DLS), Small angle X-ray scattering angle (SAXS) and analytical ultracentrifugation (AUC). The results revealed a mixture of dimmers and tetramers in solution for SPS2 with predominance of dimers. Many strategies and improvements in crystallization and diffraction were used to obtain suitable SPS2 crystals for determination of the crystallography structure. T. brucei SPS2 crystals and L. major SPS2 crystals with truncated N-terminal were obtained. However, only the structure of SPS2 protein from L. major with truncated N-terminal to 1.9 Å of resolution was solved. Comparative studies of this structure with other selenophosphate synthases revealed the same structural organization. Functional complementation experiments of truncated and mutated SPS2 revealed three residues located in the SPS2 N- terminal as essential for the activity of the enzyme (Leu33 , Thr34 and Tyr36 to T. brucei SPS2; Leu37 , Thr38 and Tyr40 to L. major SPS2) . Mutational analysis based on the crystal structures indicated that these residues may be involved in the mechanism of selenophosphate delivery to the pathway enzyme next, the selenocysteine synthase. This found could prevent the diffusion of reactive selenium, resulting in selenocysteine synthesis efficient. The results presented here provided important information and new insights about the of selenophosphate synthetase catalysis mechanism in the selenocysteine synthesis pathway.
3

Cloning, purification and crystallization of selenophosphate synthetase cloning, purification and crystallization of ERp44 from Mus musculus /

Chang, Li-Chi. Unknown Date (has links)
Techn. University, Diss., 2006--München.
4

Estudo celular, bioquímico e biofísico da enzima selenofosfato sintetase de Naegleria gruberi / Biochemical, biophysical and cellular studies of selenophosphate synthetase from Naegleria gruberi

Natalia Karla Bellini 16 July 2015 (has links)
O microrganismo alvo deste estudo pertence ao gênero Naegleria, que compreende amebas de vida livre amplamente distribuídas ao redor do mundo. Estas possuem estratégias de adaptação em condições de temperatura e pH que envolvem a diferenciação das células para as formas flagelada e cística. A via de biossíntese e incorporação do aminoácido selenocisteína (Sec, U) em N. gruberi foi descrita e, devido à incorporação co-traducional deste aminoácido em resposta a um códon UGA em fase de leitura, possui diversos fatores específicos que tornam a via alvo de estudos moleculares. Dentre os genes identificados, destaca-se o de selenofosfato sintetase (SPS), uma proteína funcionalmente dimérica envolvida na catálise da conversão de seleneto e adenosina 5´-trifosfato (ATP) em selenofosfato, essencial à síntese de Sec. Diferindo das SPSs homólogas, em N. gruberi a proteína (NgSPS2) é codificada em fusão N-terminal com uma metiltransferase e totaliza 737 aminoácidos. Esta descoberta motivou os objetivos da pesquisa baseada na investigação celular de NgSPS2 nativa nas três diferentes formas de vida de N. gruberi através de ensaios imunoenzimáticos, e a caracterização bioquímica e biofísica da proteína recombinante. A análise dos resultados obtidos por Western blot indicaram que NgSPS2, in vivo, apresenta os dois domínios metiltransferase e SPS separados após a tradução para uma cultura amebóide e, após alcançar a diferenciação de cada uma das formas isoladamente, este resultado se confirmou também para cistos e flagelados. A investigação de N. gruberi em cultura indica o aumento na atividade da via de síntese de selenoproteínas na presença de selênio conferindo resistência às condições de estresse oxidativo. A caracterização bioquímica do domínio C-terminal de NgSPS2, por cromatografia de exclusão molecular analítica e eletroforese não desnaturante, revelou predominância de dímeros em solução, coerente com SPSs homólogas. Os testes de cristalização não resultaram na obtenção de cristais, porém a proteólise limitada permitiu selecionar tripsina como potencial para a clivagem do N terminal do N terminal flexível. A conservação dos resíduos de aminoácidos funcionais em NgSPS2.CTD e seu comportamento em solução confirmam a obrigatoriedade da união de cada monômero e, por isso o domínio metiltransferase adicional pode ser desfavorável à montagem do dímero e in vivo a fusão é desfeita após a tradução. / The target microorganism of the present study belongs to the Naegleria genus. This genus includes free life amoebas widely distributed around the world that, in order to survive in bad temperature and pH environments, developed an adaptive strategy consisting of cells differentiation to flagellate and cystic form. The biosynthesis and incorporation of selenocysteine amino acid (Sec, U) in N. gruberi has been described and, because of the co-translational incorporation of this amino acid in response to a UGA codon during the reading step, this process has several specific factors which make it a target for molecular studies. Among the identified genes, we can highlight the one which encodes the selenophosphate synthetase that is involved in the catalytic conversion of selenite and adenosine triphosphate into selenium phosphate, a necessary step to the Sec synthesis that uses selenide and ATP to produce selenophosphate. SPS from N.gruberi is encoded with an methyltransferase N-terminal fused with the typical SPS C-terminal domain, an open read frame that contains 2211 nucleotides encoding 737 amino acids. This discovery has motivated the initial aims of this project, based on the cellular investigation of SPS2, native on the three different form lifes of N. gruberi, through immunoenzymatic assays, besides a study with the recombinant protein to clarify the biochemistry and biophysics features of NgSPS2. The results indicated that the protein do not keep both domains fused after the translation process, suggesting that they need to be separated to perform their biological function. The investigation of the N. gruberi culture revealed that the cells become less sensitive to stress agent in the presence of selenium, which seems to be correlated with the increasing activity of the selenoprotein synthesis. The biochemistry characterization of the NgSPS2 C-terminal domain, using size exclusion chromatography and electrophoresis under non-denaturing conditions revealed the predominance of dimers in solution according with the typical homologous SPS oligomeric state. The crystallization tests have not resulted in crystal growth; however, the limited proteolysis may be an alternative to optimize the crystallization process. These studies may enlarge the knowledge about the biosynthesis of Sec. in N. gruberi.
5

Estudos estruturais e funcionais da Selenofosfato Sintetase de Trypanosoma brucei e Leishmania major / Structural and functional studies of Selenophosphate Synthetase from Trypanosoma brucei and Leishmania major

Lívia Maria Faim 24 April 2014 (has links)
A síntese e incorporação de Selenocisteína em selenoproteínas ocorre co tradicionalmente direcionado pelo códon de terminação UGA. Uma maquinaria única de enzimas e fatores proteicos é necessária para síntese de selenocisteína e decodificação do códon UGA de terminação da tradução para inserção de selenocisteína. Dentre as enzimas envolvidas, está a Selenonofosfato sintetase (SPS2), responsável por catalisar a ativação de seleneto com adenosina 5 trifosfato (ATP) para gerar selenofosfato, o doador de selênio reativo que é substrato da próxima enzima da via para formação de selenocisteína. Estudos recentes identificaram a presença da via de biossíntese de selenocisteína em parasitas kinetoplastidas e subsequentemente a proteína SPS2 de Trypanosoma brucei e Leishmania major foram caracterizadas. Entretanto, trabalhos estruturais e funcionais das enzimas permaneceram não reportados. Dessa forma, este trabalho teve seu foco estabelecido na realização de estudos estruturais e funcionais da SPS2 de T. brucei e L. major. Para caracterização da proteína em solução foram empregadas as técnicas de cromatografia de exclusão de tamanho, eletroforese em gel nativo, espalhamento dinâmico de luz (DLS), espalhamento de Raios X a baixo ângulo (SAXS) e ultracentrifugação analítica (AUC). Os resultados obtidos revelaram uma mistura de dímeros e tetrâmeros em solução para ambas SPS2 com predominância de dímeros. Muitas estratégias de cristalização e melhorias na difração foram utilizadas para obtenção de cristais proteicos apropriados para determinação da estrutura cristalográfica das SPS2. Cristais de SPS2 de T. brucei inteira e SPS2 de L. major com N-terminal truncado foram obtidos. Porém, somente a estrutura cristalográfica da proteína SPS2 de Leishmania major com o N-terminal truncado a 1,9 Å de resolução foi determinada. Estudos comparativos entre esta estrutura e outras selenofosfato sintetases mostrou a mesma organização estrutural entre elas. Experimento de complementação funcional das SPS2 truncadas e mutadas pontualmente revelou três resíduos localizados no N-terminal como fundamentais para atividade da SPS2 (Leu33, Thr34; Tyr36 e Leu37, Thr38; Tyr40 para SPS2 de T. brucei e L.major, respectivamente). Análise mutacional baseada nas estruturas cristalográficas indicou que estes resíduos podem estar envolvidos no mecanismo de entrega do selenofosfato para a próxima enzima da via, a Selenocisteína sintase. Isto poderia evitar a difusão de compostos reativos de selênio, resultando em uma eficiência na síntese de selenocisteína. Os resultados aqui apresentados forneceram informações importantes e novas perspectivas a respeito do mecanismo de catalise da enzima selenofosfato sintetase na via de síntese de selenocisteína. / The synthesis and incorporation of selenocysteine in selenoproteins occurs cotranslationally directed by the UGA stop codon. An unique machine of enzymes and protein factors are required for selenocysteine synthesis and decoding of UGA translation termination codon for the insertion of selenocysteine. Among the enzymes involved, Selenonofosfato synthetase (SPS2) is the responsible for catalyzing the activation of selenite with adenosine 5\' - triphosphate (ATP) to generate selenophosphate, the reactive selenium donor, which is substrate of the next pathway enzyme to formation of selenocysteine. Recent studies have identified the presence of selenocysteine biosynthesis in parasites Kinetoplastidas and subsequently, the SPS2 protein of Trypanosoma brucei and Leishmania major have been characterized, however, structural and functional studies of enzymes remain not reported. Thus, this present work report biochemical and biophysical studies of SPS2. To characterize the protein in solution, there were employed the techniques of size exclusion chromatography, native gel electrophoresis, dynamic light scattering (DLS), Small angle X-ray scattering angle (SAXS) and analytical ultracentrifugation (AUC). The results revealed a mixture of dimmers and tetramers in solution for SPS2 with predominance of dimers. Many strategies and improvements in crystallization and diffraction were used to obtain suitable SPS2 crystals for determination of the crystallography structure. T. brucei SPS2 crystals and L. major SPS2 crystals with truncated N-terminal were obtained. However, only the structure of SPS2 protein from L. major with truncated N-terminal to 1.9 Å of resolution was solved. Comparative studies of this structure with other selenophosphate synthases revealed the same structural organization. Functional complementation experiments of truncated and mutated SPS2 revealed three residues located in the SPS2 N- terminal as essential for the activity of the enzyme (Leu33 , Thr34 and Tyr36 to T. brucei SPS2; Leu37 , Thr38 and Tyr40 to L. major SPS2) . Mutational analysis based on the crystal structures indicated that these residues may be involved in the mechanism of selenophosphate delivery to the pathway enzyme next, the selenocysteine synthase. This found could prevent the diffusion of reactive selenium, resulting in selenocysteine synthesis efficient. The results presented here provided important information and new insights about the of selenophosphate synthetase catalysis mechanism in the selenocysteine synthesis pathway.
6

Estudos biofísicos da Selenofosfato Sintetase de Escherichia coli e investigação de seu papel na via de biossíntese de Selenocisteínas / Biophysical studies of Escherichia coli Selenophosphate Synthetase and investigation of its role in the Selenocysteine biosynthesis pathway

Silva, Ivan Rosa e 30 January 2012 (has links)
A principal forma biológica do selênio em vários organismos é o aminoácido Selenocisteína (Sec, U), que é incorporado em um polipeptídio emergente em códons UGA específicos. Em Escherichia coli, esta incorporação requer os genes que codificam para Seril-tRNA Sintetase (SerRS), Selenocisteína Sintase (SELA), um tRNASec específico (SELC), Selenofosfato Sintetase (SELD) e um fator de elongação de transcrição específico (SELB). A proteína Selenofosfato Sintetase (EC 2.7.9.3) pertence à família AIRS, de proteínas que têm o ATP como substrato, e produz o composto biologicamente ativo doador de selênio, o monoselenofosfato, a partir de ATP e seleneto. O gene selD em E. coli tem 1041 pares de bases e codifica uma proteína com 347 aminoácidos e massa molecular de 37 kDa. A fase aberta de leitura do gene selD foi amplificada do DNA genômico de E. coli e clonada em vetor de expressão pet28a(+) (Novagen). A proteína recombinante foi superexpressa em E. coli por indução com IPTG e purificada por cromatografia de afinidade por ligação a metal e a fração eluída foi concentrada por ultrafiltração. Em seguida, o produto foi submetido à clivagem da cauda de histidinas com Trombina. Para purificar o produto de reação de clivagem com protease e para estimar sua massa molecular e estado oligomérico, empregou-se cromatografia de exclusão molecular. A proteína pura foi utilizada em experimentos de Gel Nativo e em estudos das suas propriedades hidrodinâmicas realizados por meio de Espalhamento Dinâmico de Luz (DLS), Espalhamento de Raios-X a Baixo Ângulo (SAXS) e Ultracentrifugação Analítica (AUC). Os resultados obtidos revelam uma mistura de oligômeros em solução, em um equilíbrio dímero-tetrâmero e tetrâmero-octâmero. Um modelo tridimensional para o homodímero de SELD de E. coli foi obtido por Modelagem Molecular e suas propriedades hidrodinâmicas preditas concordam com aquelas obtidas experimentalmente. Adicionalmente, triagens de condições de cristalização da proteína revelaram condições em que a proteína cristaliza na forma de pequenas agulhas e ensaios de otimização por variação da concentração de agente precipitante e pH não resultaram em monocristais adequados para difração de raios-X. A análise do papel da SELD na via de biossíntese de Selenocisteínas levanta a hipótese de que esta proteína deve entregar o monoselenofosfato para o complexo SELA-SELC de modo que o selênio seja incorporado para formação do aminoácido Selenocisteína, já que os compostos de selênio são tóxicos quando estão livres na célula. Portanto, a investigação da interação da SELD com o complexo SELA-SELC foi observada pelo monitoramento da anisotropia de fluorescência do complexo SELA-SELC mediante titulação de SELD. A análise local da interação para manutenção do complexo SELD-SELA-SEC foi feita por meio de espectrometria de massas com troca H/D, que revelou possíveis sítios de interação na superfície da SELD. Os resultados mostrados neste trabalho ampliam o conhecimento sobre a via de biossíntese de Selenocisteína, revelando detalhes da interação da SELD com o complexo SELA-SELC. / The main biological form of selenium in several organisms is the amino acid Selenocysteine (Sec, U), which is incorporated into selenoproteins in specific UGA codons. In Escherichia coli, it requires the genes that codify to Seryl-tRNA Synthetase (SerRS), Selenocysteine Synthase (SELA), a specific tRNASec (SELC), Selenophosphate Synthetase (SELD) and a specific translation elongation factor (SELB). Selenophosphate Synthetase (EC 2.7.9.3) belongs to AIRS superfamily of proteins that have ATP as a substrate and this protein produces the biologically active selenium donor compound, monoselenophosphate, from ATP and selenide. The selD gene from E. coli is 1041 base pairs long and codifies a protein with 347 amino acids and molecular mass of 37 kDa. The open reading frame of selD gene was amplified from E. coli genomic DNA and cloned into pET28a(+) expression vector (Novagen). The recombinant protein was overexpressed in E. coli by IPTG induction and purified by metal affinity chromatography, and the eluted fraction was concentrated by ultrafiltration. The product was used for Thrombin protease cleavage of the 6-His tag. In order to purify the product of proteolysis and to estimate its molecular mass and oligomeric state, we used size exclusion chromatography. The pure protein sample was used for Native Gel Electrophoresis. Hydrodynamic properties of the protein were studied by Dynamic Light Scattering (DLS), Small angle X-ray scattering (SAXS) and Analytical Ultracentrifugation (AUC). The results show an equilibrium between SELD oligomeric forms, as dimer-tetramer and tetramer-octamer association in solution. A tridimensional model of E. coli SELD was obtained by Molecular Modelling and its predicted hydrodynamic properties agree with those observed experimentally. In addition, crystal screening revealed crystallization conditions suitable for protein crystallization as small needles, but optimization of these conditions by precipitant agent and pH variation did not result in monocrystals reliable for X-ray diffraction. An analysis of SELD´s role in the Selenocysteine biosynthesis pathway indicates that SELD must deliver monoselenophosphate to the SELA-SELC complex so that the selenium is incorporated to the amino acid to form selenocysteyl-SEC, since selenium compounds are toxic when they are freely available in the cell. This interaction was observed by fluorescence anisotropy. The local analysis of complex formation was monitored by mass spectrometry after H/D exchange and revealed possible sites for this interaction on SELD surface. The results improve our knowledge about the Selenocysteine pathway in the cell, showing details of the interaction between SELD and the SELA-SELC complex.
7

Estudos biofísicos da Selenofosfato Sintetase de Escherichia coli e investigação de seu papel na via de biossíntese de Selenocisteínas / Biophysical studies of Escherichia coli Selenophosphate Synthetase and investigation of its role in the Selenocysteine biosynthesis pathway

Ivan Rosa e Silva 30 January 2012 (has links)
A principal forma biológica do selênio em vários organismos é o aminoácido Selenocisteína (Sec, U), que é incorporado em um polipeptídio emergente em códons UGA específicos. Em Escherichia coli, esta incorporação requer os genes que codificam para Seril-tRNA Sintetase (SerRS), Selenocisteína Sintase (SELA), um tRNASec específico (SELC), Selenofosfato Sintetase (SELD) e um fator de elongação de transcrição específico (SELB). A proteína Selenofosfato Sintetase (EC 2.7.9.3) pertence à família AIRS, de proteínas que têm o ATP como substrato, e produz o composto biologicamente ativo doador de selênio, o monoselenofosfato, a partir de ATP e seleneto. O gene selD em E. coli tem 1041 pares de bases e codifica uma proteína com 347 aminoácidos e massa molecular de 37 kDa. A fase aberta de leitura do gene selD foi amplificada do DNA genômico de E. coli e clonada em vetor de expressão pet28a(+) (Novagen). A proteína recombinante foi superexpressa em E. coli por indução com IPTG e purificada por cromatografia de afinidade por ligação a metal e a fração eluída foi concentrada por ultrafiltração. Em seguida, o produto foi submetido à clivagem da cauda de histidinas com Trombina. Para purificar o produto de reação de clivagem com protease e para estimar sua massa molecular e estado oligomérico, empregou-se cromatografia de exclusão molecular. A proteína pura foi utilizada em experimentos de Gel Nativo e em estudos das suas propriedades hidrodinâmicas realizados por meio de Espalhamento Dinâmico de Luz (DLS), Espalhamento de Raios-X a Baixo Ângulo (SAXS) e Ultracentrifugação Analítica (AUC). Os resultados obtidos revelam uma mistura de oligômeros em solução, em um equilíbrio dímero-tetrâmero e tetrâmero-octâmero. Um modelo tridimensional para o homodímero de SELD de E. coli foi obtido por Modelagem Molecular e suas propriedades hidrodinâmicas preditas concordam com aquelas obtidas experimentalmente. Adicionalmente, triagens de condições de cristalização da proteína revelaram condições em que a proteína cristaliza na forma de pequenas agulhas e ensaios de otimização por variação da concentração de agente precipitante e pH não resultaram em monocristais adequados para difração de raios-X. A análise do papel da SELD na via de biossíntese de Selenocisteínas levanta a hipótese de que esta proteína deve entregar o monoselenofosfato para o complexo SELA-SELC de modo que o selênio seja incorporado para formação do aminoácido Selenocisteína, já que os compostos de selênio são tóxicos quando estão livres na célula. Portanto, a investigação da interação da SELD com o complexo SELA-SELC foi observada pelo monitoramento da anisotropia de fluorescência do complexo SELA-SELC mediante titulação de SELD. A análise local da interação para manutenção do complexo SELD-SELA-SEC foi feita por meio de espectrometria de massas com troca H/D, que revelou possíveis sítios de interação na superfície da SELD. Os resultados mostrados neste trabalho ampliam o conhecimento sobre a via de biossíntese de Selenocisteína, revelando detalhes da interação da SELD com o complexo SELA-SELC. / The main biological form of selenium in several organisms is the amino acid Selenocysteine (Sec, U), which is incorporated into selenoproteins in specific UGA codons. In Escherichia coli, it requires the genes that codify to Seryl-tRNA Synthetase (SerRS), Selenocysteine Synthase (SELA), a specific tRNASec (SELC), Selenophosphate Synthetase (SELD) and a specific translation elongation factor (SELB). Selenophosphate Synthetase (EC 2.7.9.3) belongs to AIRS superfamily of proteins that have ATP as a substrate and this protein produces the biologically active selenium donor compound, monoselenophosphate, from ATP and selenide. The selD gene from E. coli is 1041 base pairs long and codifies a protein with 347 amino acids and molecular mass of 37 kDa. The open reading frame of selD gene was amplified from E. coli genomic DNA and cloned into pET28a(+) expression vector (Novagen). The recombinant protein was overexpressed in E. coli by IPTG induction and purified by metal affinity chromatography, and the eluted fraction was concentrated by ultrafiltration. The product was used for Thrombin protease cleavage of the 6-His tag. In order to purify the product of proteolysis and to estimate its molecular mass and oligomeric state, we used size exclusion chromatography. The pure protein sample was used for Native Gel Electrophoresis. Hydrodynamic properties of the protein were studied by Dynamic Light Scattering (DLS), Small angle X-ray scattering (SAXS) and Analytical Ultracentrifugation (AUC). The results show an equilibrium between SELD oligomeric forms, as dimer-tetramer and tetramer-octamer association in solution. A tridimensional model of E. coli SELD was obtained by Molecular Modelling and its predicted hydrodynamic properties agree with those observed experimentally. In addition, crystal screening revealed crystallization conditions suitable for protein crystallization as small needles, but optimization of these conditions by precipitant agent and pH variation did not result in monocrystals reliable for X-ray diffraction. An analysis of SELD´s role in the Selenocysteine biosynthesis pathway indicates that SELD must deliver monoselenophosphate to the SELA-SELC complex so that the selenium is incorporated to the amino acid to form selenocysteyl-SEC, since selenium compounds are toxic when they are freely available in the cell. This interaction was observed by fluorescence anisotropy. The local analysis of complex formation was monitored by mass spectrometry after H/D exchange and revealed possible sites for this interaction on SELD surface. The results improve our knowledge about the Selenocysteine pathway in the cell, showing details of the interaction between SELD and the SELA-SELC complex.
8

Electrocatalytic Studies Using Layered Transition Metal Thiphosphates, Metal Chalcogenides and Polymers

Mukherjee, Debdyuti January 2017 (has links) (PDF)
The ever increasing demand for energy due to over consumption of non-renewable fossil fuels has emphasized the need for alternate, sustainable and efficient energy conversion and storage systems. In this direction, electrochemical energy conversion and storage systems involving various fundamental electrochemical redox processes such as hydrogen evolution (HER), oxygen reduction (ORR), oxygen evolution (OER), hydrogen oxidation (HOR) reactions and others become highly important. Electrocatalysts are often used to accelerate the kinetics of these reactions. Platinum (Pt), ruthenium oxide and iridium oxide (RuO2 and IrO2) are known to be the state of the art catalysts for several of these reactions due to favouarable density of states (DOS) near the Fermi level, binding energy with the reactant species, chemical inertness etc. Apart from HER, OER and ORR, chlorine evolution reaction (Cl-ER) is another industrially important reaction associated with water purification, disinfection, bleaching, chemical weapons and pharmaceuticals. Dimensionally stable anodes (RuO2/IrO2 mixed with TiO2 on Ti) are the most commonly used catalysts for this process. Issues related to surface poisoning, corrosion and cost of the catalysts, in addition to selectivity and specificity towards a particular reaction are various aspects to be addressed. For example, Pt is not very specific for ORR in presence of methanol in addition to high cost and corrosion in certain media. On the other hand, DSA can efficiently catalyze both OER and Cl-ER, and hence there is overlap of the two processes in the potential range available. There is an on going search for efficient, cost-effective, stable catalysts that possess high specificity for a particular redox reaction. Towards this goal, the present study explores certain layered (phospho)chalcogenides for catalyzing HER, ORR, OER and Cl-ER. The present thesis is structured in two parts, where the first part explores the multi-functional catalytic aspects of new classes of compounds based on layered transition metal mixed chalcogenides (MoS2(1-x)Se2x) and ternary phosphochalcogenides (FePS3, FePSe3 and MoPS). In addition, lithium insertion and desinsertion has been studied with the aim of using the layered materials for rechargeable batteries. The second part of the thesis explores organic electrode materials with active carbonyl groups such as rufigallol, polydihydroxyanthrachene succinic anhydride (PDASA) as battery electrodes. Additionally, covalently functionalized transition metal phthalocyanines with reduced graphene oxide are studied as counter electrodes in dye sensitized solar cells (DSSCs). MoS2(1-x)Se2x (x = 0 to 1) compositions are solid solutions of MoS2 and MoSe2 in different ratios. They crystallize in hexagonal structure with space group P63/mmc (D6h4) having Mo in trigonal prismatic coordination like the pristine counterparts. X-Ray diffraction studies reveal that Vegard’s law (figure 1a) is followed and hence complete miscibility of MoS2 and MoSe2 is established. MoS2(1-x)Se2x (x = 0 to 1) are layered in nature and the layers are held together by long range, weak van der Waal’s forces. This gives us the flexibility of exfoliation to produce corresponding few-layer materials (figure 1b). Figure 1. (a) Variation of lattice parameter corresponding to (002) reflection of MoS2(1-x)Se2x with different x values. (b) Scanning electron micrograph of few-layer MoS2(1-x)Se2x (x = 0.5). The electrocatalytic activity of the few-layer sulphoselenides have been studied towards HER in aqueous 0.5 M H2SO4 and towards Cl-ER in 3 M aqueous NaCl (pH = 3) solution. The mixed chalcogenides exhibit very good activities for both HER and Cl-ER as compared to the activity of their pristine counter parts (i.e. MoS2 and MoSe2) (figures 2a and 2b). Electrocatalytic activity on different compositions reveal that MoS1.0Se1.0 exhibits the maximum activity. Additionally, it has been observed that MoS1.0Se1.0 shows high specificity for Cl-ER with negligible interference of OER. Figure 2. Voltammetric data for (a) hydrogen evolution reaction (in 0.5 M aqueous H2SO4) and (b) chlorine evolution reaction (in 3 M aqueous NaCl solution, pH = 3) on MoS2(1-x)Se2x (x = 0, 0.5, 1). Figure 3. (a) XRD pattern of MoS2(1-x)Se2x (x = 0.5) electrode after a cycle of Li insersion and deinsersion (red) along with as-synthesized material (black) (b) Cycling behaviour of rGO supported (black) and pristine (red) MoS2(1-x)Se2x (x = 0.5) as electrode in rechargeable lithium-ion battery. The equiatomic MoS1.0Se1.0 has also been studied as an anode material for rechargeable lithium batteries. The cyclic voltammogram and characterization after charge-discharge cycle (figure 3a) indicate intercalation of Li with in the layers followed by conversion type formation of Li-S and Li-Se type compounds. The pristine material shows continuous capacity fading while the composites of sulphoselenides functionalized with conducting carbon supports such as rGO, MWCNT, super P carbon, toray carbon show marked improvement in capacity as well as cycling behavior. The rGO functionalized MoS1.0Se1.0 reveals ~1000 mAh/g of stable specific discharge capacity for 500 cycles (figure 3b). In the next two chapters, new class of transition metal-based layered materials FePS3 and FePSe3, containing both P and chalcogen (S and Se) is indroduced for electrocatalysis. FePS3 crystallizes in monoclinic symmetry with an indirect band gap of ~1.55 eV while FePSe3 possesses rhombohedral crystal structure with comparatively low band gap (~1.3 eV) as shown in figure 4a. The FePS3 and FePSe3 have been exfoliated as has been done for MoS1.0Se1.0 (liquid exfoliation method) using acetone as the solvent. Stable colloids with few-layer nanosheets having lamellar morphology and lateral sizes of ~100 to 200 nm are obtained. Electrical characterization indicates that they are semiconducting and the conductivity of the Se analogue is ~50 times higher than that of the S analogue (figure 4b). Figure 4. (a) Catholuminescence of FePX3 ( X = S and Se) reveals the band gap of the material. Band gap of the S analogue is 1.52 eV and that of the Se analogue is 1.33 eV (b) Resistivity of FePX3 ( X = S and Se) as a function of temperature. The tri-functional electrocatalytic activities on rGO-few layer FePX3 (X = S and Se) have been evaluated for HER over a wide pH range (0.5 M H2SO4, 0.5 M KOH, phosphate Figure 5. Catalytic activity of rGO-few-layer FePX3 (X = S, Se) towards HER in (a) aqueous 0.5 M H2SO4 and (b) 3.5 wt % NaCl solutions. (c) ORR activity of the catalysts in oxygen saturated 0.5 M KOH (d) OER behaviour on the catalysts in 0.5 M KOH at a rotation speed of 1600 rpm. buffer, pH 7 and 3.5 % NaCl), ORR and OER in alkaline media (0.5 M KOH). The studies clearly reveal that both rGO-FePS3 and rGO-FePSe3 exhibit excellent HER activity in acidic media (figure 5a) with high stability. The HER studies in 3.5 wt % aqueous NaCl solution (figure 5b) suggests that the catalysts are effective in evolving hydrogen from sea-water environment. Studies on ORR activity (figure 5c) indicate that the rGO composites of both S and Se analogues follow 4-electron pathways to produce water as the final product. They are also found to be highly methanol tolerant. In the case of OER (figure 5d), XPS characterization of the electrodes after the voltammetric studies reveals the presence of very thin layer of Fe2O3 (not detectable by XRD). All the three reactions (HER, ORR and OER) catalyzed by the Se analogue are better than the S analogue (figure 5). This could be due to the low band gap and high conductivity of FePSe3 as compared to FePS3. The over potential to achieve 10 mAcm-2 current density is ~108 mV for rGO-few-layer FePS3 catalyst where in the case of rGO-few layer FePSe3, it is ~97 mV (table 1). Table 1. Catalytic activities of rGO-few layer FePS3 and rGO-few layer FePSe3 towards HER, ORR and OER. Reaction studied rGO-FePS3 rGO-FePSe3 HER (η @ 10mAcm-2) ~108 mV ~97 mV ORR (peak potential) ~0.81 V ~0.87 V OER (η @ 10mAcm-2) ~470 mV ~430 mV It is likely that there is a strong interaction between FePX3 (metal d-orbital) and rGO, as observed from the downward shift of Fe 2p peak in high resolution XPS studies. This interaction may extend the density of states of metal d-orbitals thereby improving the catalytic activities. The next chapter deals with molybdenum-based phosphosulphide compound (MoPS). Molybdenum-based phosphide catalysts have been explored recently as excellent catalysts for various electrochemical reactions such as HER. It is expected that the catalyst containing both S and P will show positive effects on catalytic activities due to the synergy between S and P. In the present study, P incorporated MoS2 is studied towards HER. The XRD pattern of the as-synthesized crystal suggests the presence of mixed phase of MoS2, MoP2 and MoP while the elemental mapping in microscopy indicates the ratio of Mo, P and S to be 1:1:1. The electrochemical HER in 0.5 M H2SO4 indicates that the activity is improved drastically as compared to bulk and few-layer MoS2. The next section explores the use of different organic electrode materials possessing active carbonyl groups for Li-storage studies. The advantage of the use of carbonyl-based compounds lies in the high reversible activity towards Li ion insersion and de-insersion. Rufigallol (figure 6a) exhibits very stable capacity of ~200 mAh/g (at C/20 rate) upto 500 Figure 6. (a) and (c) Schematic representation of rufigallol and poly-dihydroanthracene succinic anhydride (PDASA) respectively. (b) and (d) Cyclic behaviour of rufigallol (at C/20 rate) and PDASA (at 20 mAg-1 current rate) in Li-storage devices. (e) and (f) represent the coulombic efficiency of rufigallol (at C/20 rate) and PDASA (at 20 mAg-1 current rate) as a function of number of cycles. cycles along (figure 6b) and with very good rate capability. A triptycene-based mesoporous polymer, PDASA (figure 6c) is introduced and explored as efficient electrode material for Li-storage. PDASA exhibits very high capacity of ~1000 mAh/g at a current rate of 50 mA/g upto 1000 cycles (figure 6d). Even at very high current rates (3A/g) excellent cyclability is observed. The mechanistic details of lithium uptake and release are studied using various spectroscopic techniques. In both the cases the coulombic efficiency observed is ~80 to 90 % (figures 6e and f). Figure 7. (a) Digital photograph of the dye sensitized solar cell with rGO-Co-TAPc counter electrode. (b) Photoconversion efficiency of DSSCs with different counter electrodes as mentioned in the figure. (c) Photo conversion efficiency of Pt and rGO-Co-TAPc based DSSCs as function of storage time. (d) Schematic illustration of DSSC wherein the energy level of the counter electrodes and electrolyte are shown for different M-TAPcs. In a slightly different direction, metal phthalocyanine - rGO composites (rGO-M-TAPc; M = Co, Zn, Fe) have been explored as counter electrodes in DSSC. Figure 7a depicts the digital image of a DSSC constructed using rGO-Co-TAPc as the counter electrode. It has been observed that rGO-cobalt tetraamino phthalocyanine (rGO-Co-TAPc) counter electrode exhibits ~6.6 % of solar conversion efficiency (figure 7b) and is close to that of standard DSSC (Pt counter electrode) under identical experimental conditions and are highly stable (figure 7c). Other metal phthalocyanines show less efficiency and is analysed based on the relative positions of HOMO energy levels of the materials and the energy level of the redox system (I-/I3- system) as given in figure 7d. The thesis contains eight chapters on aspects discussed above along with summary and future perspectives given at the end. It is devided into various chapters in two sections, one comprising inorganic chalcogenide-based electrocatalysts and another comprising organic electrode materials. Appendix I discusses the Na-storage behaviour of MoS1.0Se1.0 and appendix II describes the Li-storage behaviour of rGO functionalized benzoquinone and diamino anthraquinone electrode materials.

Page generated in 0.0845 seconds