• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 12
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 64
  • 64
  • 15
  • 13
  • 13
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Conception, synthèse et étude de dérivés de C60 fonctionnalisés : applications biologiques et développement méthodologique / Design, synthesis and study of functionalized C60 : biological applications and methodological development

Sigwalt, David 26 March 2013 (has links)
Notre équipe a récemment développé une méthode polyvalente permettant de préparer des dérivés complexes de C60 hexa-adduits fonctionnalisés. Cette méthodologie permet d’obtenir des produits aux caractéristiques originales. Le C60 central agit comme un support central peu réactif, autour duquel des fonctionnalités sont réparties dans un espace octaédrique parfaitement défini. La première partie de ce travail de thèse a consisté à exploiter cette méthodologie pour créer des C60 hexa-adduits polycationiques aux propriétés de transfection remarquables. Dans un second temps, les dendrons polyamines synthétisés ont été mis à profit pour créer des structures supramoléculaires de C60 hexa-adduits, sous forme micellaire. Par la suite, l’étude de ces assemblages a orienté nos investigations vers l’élaboration de dérivés de C60 hexa-adduits mannosylés multivalents résultant d’un assemblage supramoléculaire, dont leurs possibles applications biologiques sont actuellement à l’étude. En parallèle une synthèse covalente a permis d’obtenir un «équivalent dendritique» de C60 hexa-adduit multimannosylé. Partant du constat que notre méthodologie est efficace principalement pour des dérivés de C60 hexa-adduits qui ont une régio-sélectivité particulière, la dernière partie a été consacrée au développement de nouvelles voies de synthèses qui pourront permettre de créer des dérivés de C60 avec un contrôle régio-sélectif original. / Our team has recently built a polyvalent method that gives complex functionalized C60 hexa-adducts. This methodology permits to obtain products with original features. C60 acts as an inert scaffold, around which functionnalities are distributed in a well-defined octahedral space. The first part of this thesis describes exploitation of this methodology to create polycationics C60 hexa-adducts, which have shown remarkable gene delivery capabilities. Next, the synthetized polyamine dendrons were used to build supramolecular structure of C60 hexa-adducts, as micellar forms. The study of these self-assembled structures has guided us to design micelles of mannosylated C60 hexa-adducts, which biological applications are under investigation. In parallel a covalent synthesis has furnished a dendrimers-like multimannosylated C60 hexa-adduct. Based on the observation that our methodology to create C60 hexa-adduct is efficient only for a specific regio-selectivity, the last part of this thesis was devoted to the development of new synthetic routes to obtain C60 derivates with an original regio-selective control.
42

Investigação do efeito de moléculas auto-organizáveis na resistência à corrosão da liga de Alumínio 1050 / Investigation on the of effect of self assembling molecules on the corrosion resistance of the 1050 aluminium alloy

Margarida Szurkalo 16 December 2009 (has links)
Tratamentos de superfície são técnicas amplamente utilizadas com a finalidade de aumentar a resistência à corrosão de materiais metálicos. No caso específico do alumínio e ligas de alumínio, o tratamento com cromo hexavalente é um dos processos mais utilizados. Isso, em razão da eficiência e da facilidade de aplicação desse processo. Entretanto, em virtude de restrições ambientais e do elevado custo de tratamento de resíduos gerados neste processo, métodos alternativos para sua substituição vêm sendo avaliados. Neste contexto, o presente estudo investigou o processo de formação e proteção à corrosão fornecida por filmes de moléculas autoorganizáveis de compostos à base de fosfonatos sobre a liga de alumínio 1050. Para definir as condições do tratamento foram utilizadas medidas de condutividade e de ângulo de contato, juntamente com ensaios eletroquímicos. Técnicas eletroquímicas, especificamente: medidas de variação do potencial a circuito aberto (PCA), espectroscopia de impedância eletroquímica (EIE) e polarização potenciodinâmica foram utilizadas para avaliar a proteção à corrosão. Os diagramas experimentais de impedância foram interpretados utilizando circuitos elétricos equivalentes que simulam modelos do filme de óxido que se forma na superfície da liga. Os resultados fornecidos com a liga tratada com moléculas auto-organizáveis foram comparados com resultados obtidos em iguais condições com amostras da liga sem qualquer tratamento ou cromatizada com Cr(VI) e mostraram que o tratamento com moléculas auto-organizáveis aumenta significativamente a resistência à corrosão da liga e apresenta, em determinadas condições, desempenho próximo ao fornecido pelo processo de cromatização. / Surface treatments are widely used to increase the corrosion resistance of metallic materials. Specifically for aluminum and aluminum alloys, treatment with hexavalent chromium is one of the most used, due to its efficiency and ease of application. However, because of environmental restrictions and the high cost involved in the treatments of waste generated in this process, alternative methods for its replacement are necessary. In this context, this study investigated the effect of the surface treatment with self-assembling molecules (SAM) based on phosphonate compounds on the corrosion of the 1050 aluminum alloy. The conditions adopted for the SAM treatment were determined by conductivity and contact angle measurements, besides electrochemical experiments. Electrochemical techniques, specifically: measurement of the open circuit potential (OCP) variation with time, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves were used to evaluate the corrosion resistance of the 1050 aluminum alloy exposed to SAM treatment The experimental impedance diagrams were interpreted using equivalent electrical circuit models that simulate film that is formed on the alloy surface. The results of the samples treated with SAM were compared with those of samples either without any treatment or treated with chromatizing conversion coating with Cr(VI) and showed that the first treatment significantly increased the corrosion resistance of the aluminum alloy and approached that of chromatizing with Cr(VI) process.
43

Le motif N-aminoamide pour la synthèse d'oligomères linéaires et cycliques ; étude de son impact conformationnel / The N-aminoamide motif for the synthesis of linear and cyclic oligomers; study of its conformationnal impact

Pedeutour, Maxime 02 September 2014 (has links)
Ce travail décrit la synthèse et l’étude structurale d’oligomères mixtes linéaires et cycliques, alternant des liens amides et N-aminoamides, nommés 1 :1-[a/a-N-amino]mères. Le premier chapitre est consacré à l’étude bibliographique des méthodes de cyclisation des peptides et pseudopeptides ainsi qu’à leurs nombreuses applications. Il a été décrit que l’incorporation d’éléments potentiellement structurants, comme l’introduction de modifications du squelette peptidique, pourrait faciliter la cyclisation des oligomères linéaires. Dans cette optique, l’exploitation de travaux antérieurs du laboratoire, exposée dans le deuxième chapitre, a donné accès à de nouveaux 1 :1-[a/a-N-amino]mères phtaloylés, puis aux premiers cyclo-1 :1-[a/a-N-amino]mères protégés. La déprotection du groupement phtalimide d’un de ces composés cycliques ouvre de nouvelles perspectives comme la fonctionnalisation de l’atome d’azote déprotégé. Le troisième chapitre résume les analyses structurales réalisées et met principalement en avant les conformations originales qu’adoptent ces différents oligomères ainsi que l’influence du lien N-aminoamide. Les structures ont été établies grâce à une approche complète associant plusieurs techniques spectroscopiques (RMN, IR, fluorescence et diffraction des rayons X). Par exemple, l’analyse par diffraction des rayons X a permis de mettre en évidence la formation de nanotubes due à un empilement original de cyclotétramères déprotégés. / This work describes the synthesis and the structural study of linear and cyclic mixed oligomers alternating N-aminoamide and amide bonds, named 1:1-[a/a-N-amino]mers. The first chapter is a bibliographic study on cyclization methods of peptides and pseudopeptides (backbone modified peptides) and their applications. It has been described that the incorporation of potential structural elements, like introduction of changes to peptide backbone, could be facilitating the cyclization of linear oligomers. With this in mind, the use of previous work in our laboratory, discussed in the second chapter, gives access to new phtaloylated 1:1-[a/a-N-amino]mers and also to the first protected cyclo-1:1-[a/a-N-amino]mers. The deprotection of phthalimid group of one of these cyclic compounds opens up new opportunities like functionalization of the deprotected nitrogen atom. The third chapter sums up the results of the structural analyses and principally highlights the original conformations adopted by these different oligomers and the influence of the N-aminoamide bond. The structures were established through a complete study using several spectroscopic techniques (NMR, IR, fluorescence, X-ray crystallography). For example, the X ray studies highlight the formation of nanotubes through an original self-assembling of deprotected cyclotetramers.
44

Charakterizace samoorganizujících se molekul a jejich využití v kapilární elektroforéze / Characterization of self-assembling molecules and their application in capillary electrophoresis

Hodek, Ondřej January 2015 (has links)
This diploma thesis deals with application of newly synthesized α-cyclodextrins derivatives, 2I -O-cinnamyl-α-cyclodextrin and 3I -O-cinnamyl-α-cyclodextrin, in capillary electrophoresis. Their unique feature lies in formation of cyclodextrin aggregates in an aqueous solution by inclusion of phenyl moiety of one molecule into cavity of another one. The influence of addition of 2I -O-cinnamyl-α-CD and 3I -O-cinnamyl-α-CD to background electrolyte (BGE) and its impact on effective mobilities of eighteen selected analytes were tested. Nine analytes were measured in the form of cations (aniline, antipyrine, L-histidine, D,L-tyrosine, D,L- phenylalanine, N-(1-naphtyl)ethylenediamine, 4-nitroaniline, p-aminoaceto-phenon and tyramine) and nine in the form of anions (N-acetyl-D,L-phenylalanine, N-acetyl-D,L-tryptophan, N-benzoyl-D,L-phenylalanine, N-boc-D,L-tryptophan, N-FMOC-D,L-valine, N-FMOC-alanine, N-FMOC-D,L-leucine, D,L-3-phenyllactic acid and (R)-(-)-mandelic acid). Electrophoretic mobilities of cations were tested in BGE at pH 2.2 and anions at pH 8.0. The measurements were conducted at 25 and 50 řC. At the beginning the buffer containing 2.5 mM TRIS was adjusted with phosphoric acid to pH 2.2. However, it was found, that phosphate anions might enter cyclodextrin cavity and disable potential...
45

New scaffolding materials for the regeneration of infarcted myocardium

Arnal Pastor, María Pilar 16 January 2015 (has links)
There is growing interest in the development of biomimetic matrices that are simultaneously cell-friendly, allow rapid vascularization, exhibit enough mechanical integrity to be comfortably handled and resist mechanical stresses when implanted in the site of interest. Meeting all these requirements with a single component material has proved to be very challenging. The hypothesis underlying this work was that hybrid materials obtained by combining scaffolds with bioactive hydrogels would result in a synergy of their best properties: a construct with good mechanical properties, easily handled and stable thanks to the scaffold; but also, because of the gel, cell-friendly and with enhanced oxygen and nutrients diffusion, and promoter of cell colonization. Moreover, such a composite material would also be useful as a controlled release system because of the gel’s incorporation. Poly (ethyl acrylate) (PEA) scaffolds prepared with two different morphologies were envisaged to provide the mechanical integrity to the system. Both types of scaffolds were physicochemically characterized and the effect of the scaffolds production process on the PEA properties was examined. The scaffolds preparation methods affected the PEA properties; nevertheless, the modifications induced were not detrimental for the PEA biological performance. Two different bioactive gels were studied as fillers of the scaffolds’ pores: hyaluronan (HA), which is a natural polysaccharide, and a synthetic self-assembling peptide, RAD16-I. HA is ubiquitously present in the body and its degradation products have been reported to be angiogenic. RAD16-I is a synthetic polypeptide that mimics the extracellular matrix providing a favourable substrate for cell growth and proliferation. Given the hydrophobic nature of poly(ethyl acrylate), the combination of PEA scaffolds with aqueous gels raised a number of problems regarding the methods to combine such different elements, the ways to gel them inside the pores, and the procedures to seed cells in the new composite materials. Different alternatives to solve these questions were thoroughly studied and yielded protocols to reliably obtain these complex structures and their biohybrids. An extensive physico-chemical characterization of the components’ interaction and the combined systems was undertaken. As these materials were intended for cardiac tissue engineering applications, the mechanical properties and the effect of the fatigue on them were studied. The different composite systems here developed were homogeneously filled or coated with the hydrogels, were easy to manipulate, and displayed appropriate mechanical properties. Interestingly, these materials exhibited a very good performance under fatigue. The use of the composite systems as a controlled release device was based on the possibility of incorporating active soluble molecules in the hydrogel within the pores. A release study of bovine serum albumin (BSA), intended as a model protein, was performed, which served as a proof of concept. The biological performance of the hybrid scaffolds was first evaluated with fibroblasts to discard the materials cytotoxicity and to optimize the cell seeding procedure. Subsequently, human umbilical vein endothelial cells (HUVECs) cultures were performed for their interest in angiogenic and vascularization processes. Finally, co-cultures of HUVECs with adipose-tissue derived mesenchymal cells (MSCs) were carried out. These last cells are believed to play an important role for clinical regenerative medicine, and their cross-talk with the endothelial cells enhances the viability and phenotypic development of HUVECs. Through the different experiments undertaken, hybrid scaffolds exceeded the outcome achieved by bare PEA scaffolds. / Arnal Pastor, MP. (2014). New scaffolding materials for the regeneration of infarcted myocardium [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/46129 / TESIS / Premios Extraordinarios de tesis doctorales
46

Control of the Electrical Transport through Single Molecules and Graphene

Seifert, Christian 10 August 2020 (has links)
Der Erste dieser Arbeit befasst sich mit der STM Untersuchung einer Grenzschicht in umgebender Atmosphäre, welche sich durch die Adsorption von Graphen auf einer Glimmeroberfläche ausbildet. Durch die umgebene Luftfeuchtigkeit interkalieren Wassermoleküle in diese Grenzschicht. Durch die Variation der relativen Luftfeuchtigkeit gibt diese Wasser ab bzw. nimmt auf, und es manifestieren sich sternförmig wachsende Fraktale, in denen Graphen etwa um den Durchmesser eines Wassermoleküls an Höhe absinkt. Die STM Untersuchung, welche primär sensitiv auf die Zustandsdichte von Graphen reagiert, zeigte, dass sich anders als in den SFM Untersuchungen, zusätzliche signifikante Höhenänderungen von Graphen innerhalb der Fraktale bildeten. Dieses deutet auf eine Wasserschicht hin, welche Domänen mit signifikant unterscheidbaren Polarisationsrichtungen aufweisen, welche die Zustandsdichte von Graphen verändern kann. Dies ist aber gleichbedeutend mit der Annahme, dass sich in jener Grenzschicht mindestens zwei oder mehr lagen Wasser bilden müssen. Der zweiten Teil befasst sich mit der STM Untersuchung einer funktionalisierten Oberfläche die charakterisiert ist durch eine leitende Oberfläche (Graphen und HOPG) adsorbierten funktionalisierte Dyade an einer Fest-Flüssig Grenzfläche. Diese Dyade besteht im Wesentlichen aus einem Zink-Tetraphenylporphyrin (ZnTPP) und mit diesem über einem flexiblen Arm verbundenen Spiropyranderivat. Letztere ändert seine Konformation durch die Einstrahlung mit Licht geeigneter Wellenlänge, womit sich das Dipolmoment stark ändert. Es zeigte sich, dass das Schaltverhalten auf einen Graphen mit dem Schaltverhalten einer Dyade in Lösung vergleichbar ist. Dieses lässt den Schluss zu, dass das Schalteigenschaften einer einzelnen Dyade auf das adsorbierte Kollektiv übertragen werden kann, da es keine signifikanten beeinflussenden Wechselwirkungen durch die leitende Oberfläche und der benachbarten Dyaden auswirkte. / The first of this two-part work deals with the STM investigation of an interface in the surrounding natural atmosphere, which is formed by the adsorption of the conductive graphene onto the mica surface. In this interface, water molecules may intercalate by the surrounding humidity. By varying the relative humidity, the interface is rewetted, respectively, dewetted and it manifests itself in a star shape growing fractals, where the height of graphene is decreased by approximately the diameter of one water molecule. The STM investigation - which is primarily sensitive to the density of states of graphene - shows that additional significant changes in the height of graphene are formed within the fractal, unlike in the SFM investigations. This suggests that there is a water layer by which the density of graphene is differently affected by domains with significant distinguishable polarisation alignments. However, this is equivalent to the assumption that there are two or more water layers exist within the interface. The second part of this work deals with the STM investigation of a functionalized surface characterised by a functionalized dyad adsorbed onto a conductive surface (graphene and HOPG) at a solid-liquid interface. This dyad essentially comprises a zinc-tetraphenylporphyrin (ZnTPP) and is connected with a spiropyran derivative via a flexible linker. This changes its conformation through irradiation with light with a suitable wavelength, by which the dipole moment is also strongly changed. It was found that the switching behaviour of a graphene-based conductive surface is comparable with the switching behaviour of a dyad, which itself can move freely in solution. This leads to the conclusion that the switching properties of a single dyad can be transmitted to its collective because it affected no significant influence interactions by the conductive surface and the adjacent dyads.
47

Fabrication of 3D Multicellular Acute Lymphoblastic Leukemia Disease Models Using Biofunctionalized Peptide-Based Scaffolds

Baldelamar Juarez, Cynthia Olivia 07 1900 (has links)
Acute Lymphoblastic Leukemia (ALL) is one of the most common type of hematologic malignancy in children, characterized by an excessive proliferation of unfunctional immature lymphoblasts in the blood and the bone marrow, which leads to a range of severe blood-related complications. Given the remarkable increase in the prevalence of leukemia in the past 20 years, there has been a particular interest in the development of in vitro experimental models for cancer research. Ultra-short self-assembling peptides have shown to be a promising class of synthetic biomaterials due to their biocompatibility, tunable mechanical properties, and the possibility of controlling the scaffold composition. The objective of this study was to create a bioactive but well-defined synthetic 3D model of the bone marrow (BM) microenvironment for the simulation of ALL using biofunctionalized ultrashort self-assembling peptide scaffolds. Different bioactive motifs derived from integral extracellular matrix (ECM) constituents that are known to enhance cell-matrix adhesion, including RGDS from fibronectin, YIGSR from laminin, and GFOGER from collagen, were incorporated into the parent peptide IIZK. These peptides demonstrated to be capable of generating stable hydrogel structures composed of fibrous porous networks, each with unique nanofiber morphology and mechanical properties. All the peptide scaffolds that were investigated in this study exhibited optimal characteristics concerning the cytocompatibility of multiple BM niche cells, including human bone marrow mesenchymal stem cells (MSCs), human umbilical vein endothelial cells (HUVECs), and patient derived ALL cells. The suitability of the scaffolds as drug screening platforms was evaluated, demonstrating their potential as versatile tools for the assessment of drug efficacy.
48

Modifying Cellular Behavior Through the Control of Insoluble Matrix Cues: The Influence of Microarchitecture, Stiffness, Dimensionality, and Adhesiveness on Cell Function

Hogrebe, Nathaniel James January 2016 (has links)
No description available.
49

Fabrication of intensity-based Long-Period-Gratings fiber sensor with CO2 Laser

Zuo, Ziwei 25 July 2015 (has links)
This thesis investigates the fabrication technique and procedures for producing long period grating (LPG) fiber sensors with point-by-point irradiation under a CO2 laser beam. The type of fiber sensor under examination is desirable to be highly sensitive to the variation of the thickness and refractive index of a thin film deposited on the LPGs, making it a promising candidate as a core sensor component in a biosensor system developed for detection and verification of pathogenic bacteria, such as Methicillin-resistant Staphylococcus aureus (MRSA), Francisella tularensis, and so on. We have previously demonstrated that a UV-induced long-period-grating (LPG) based fiber sensor is extremely sensitive to small variation of refractive index (RI) and thickness of the surrounding medium. In this thesis, we will present a CO2 laser and step- stage system that operate automatically under control of a Matlab program to inscribe LPGs with desired grating period and fabrication conditions. Examples of CO2 laser induced LPGs have been found to exhibit high sensitivity, with transmissive power attenuation of more than 15 dB at the resonant peak of 1402 nm under deposition of Ionic Self-Assembled Monolayer (ISAM) thin film that is around 50 nm in thickness. When tuned to its maximum sensitivity region, this LPG has shown a transmission power reduction of 79% with the deposition of only 1 bilayer of ISAM thin film at the monitored wavelength. This result is comparable in sensitivity with the UV-induced LPGs, yet with the advantage of lower fabrication cost and simplified fabrication procedure. / Master of Science
50

X-ray Crystallographic Studies Of Designed Peptides, Self Assembling Pseudopeptides And Molecular Modeling

Hegde, Raghurama P 06 1900 (has links)
Structural studies of peptides has relevance for various applications, like, in de novo design of proteins, in designing better catalysts for organic synthesis, in structure based drug design, in the design and construction of synthetic protein mimics and in building novel materials via supramolecular self assembly. Crystal structure determination of peptides is expected to provide information about their static structure, mode of aggregation, solvation and hydrogen bond interactions of the sequences in the solid state. Comparison and analysis of the related structures from the database analysis could provide information about sequence dependent conformational features, which eventually would act as precursor for de novo protein design. Self assembling processes are common throughout nature and technology. Living cells self assemble, and understanding life will therefore require an understanding of self assembly. Supramolecular chemistry has become an area of intense research, partly inspired by biological ensembles in nature, such as collagen and enzymes or protein assemblies in general. Understanding, inducing, and directing such self assembling processes are key to unraveling the progressive emergence of complex matter. Most of the drugs available today have a broad spectrum of action in that they can act on more than one receptor and the mechanism of action of these drugs are poorly understood. Homology modeling of receptors and docking studies with drug molecules (both peptides and non-peptides) would result in a better understanding of the mechanism of drug-receptor binding thus resulting in the design of more specific and effective drugs. This thesis reports the results of X-ray crystallographic studies of ten molecules listed below (Ter: terephthalic acid) and the molecular model of cholecystokinin type 1 receptor (CCK1R). The abbreviations used for the sequences are given in parenthesis. Boc-Gly-Dpg-Gly-Leu-OMe (GDGL), C24H44N4O7 Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (VAL14), C78H14 2N14O17 MeO-Leu-Ter-Leu-OMe (LTeL), C22H32N2O6 MeO-DLeu-Ter-DLeu-OMe (DLTeDL), C22H32N2O6 MeO-Ile-Ter-Ile-OMe (ITeI), C22H32N2O6 MeO-Aib-Ter-Aib-OMe (UTeU), C18H24N2O6 Tyr-Aib-Tyr-Val (YUYV), C27H36N4O7 Tyr-Aib-Ala (YUA), C16H23N3O5 Z-Gly-Gly-Val (ZGGV), C17 H23 N3 O6 DL-4-benzamido-N, N-dipropylglutaramic acid (proglumide), C18 H26 N2 O4 Results from the Dpg containing peptide sequences helped to further the understanding of conformational preferences of this residue. The crystallographic studies on the peptide sequence, which forms a supramolecular triple helix and four pseudopeptide sequences, which adopt supramolecular ladder conformations has provided substantial information on the role of non covalent interactions in supramolecular self assembly. Crystal structure of a Gly-Gly containing tripeptide and database analysis has provided insights into the conformations adopted by this segment in peptides and proteins. The docking of the crystal structure of proglumide, an antagonist of CCK1R has led to the understanding of the mechanism of its interaction with CCK1R.

Page generated in 0.0801 seconds