• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Indigo : une approche multi-stratégique et adaptative pour un alignement sémantique intégrant le contexte des données à apparier

Bououlid Idrissi, Youssef January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
2

Indigo : une approche multi-stratégique et adaptative pour un alignement sémantique intégrant le contexte des données à apparier

Bououlid Idrissi, Youssef January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
3

Towards effective geographic ontology semantic similarity assessment

Hess, Guillermo Nudelman January 2008 (has links)
A cada dia cresce a importância da integração de informações geográficas, em virtude da facilidade de intercambiar dados através da Internet e do alto custo de produção deste tipo de informação. Com o advento da web semântica, o uso de ontologias para descrever informações geográficas está se tornando popular. Para permitir a integração, um dos estágios no qual muitas pesquisas estão focando é o chamado matching das ontologias geográficas. Matching consiste na medida de similaridade entre os elementos de duas ou mais ontologias geográficas. Estes elementos são chamados de conceitos e instâncias. O principal problema enfrentado no matching de ontologias é que estas podem ser descritas por diferentes pessoas (ou grupos), utilizando vocabulários diferentes e perspectivas variadas. No caso de ontologias geográficas os problemas são ainda maiores, em razão das particularidades da informação geográfica (geometria, localização espacial e relacionamentos espaciais), em função da falta de um modelo para descrição de ontologias geográficas amplamente adotado e, também, porque as ontologias são, muitas vezes, descritas em diferentes níveis de granularidade semântica. Estas particularidades das ontologias geográficas torna os matchers convencionais inadequados para o matching de ontologias geográficas. Por outro lado, os matchers existentes para o domínio geográfico são bastante limitados e somente funcionam para ontologias descritas em um modelo específico. Com o objetivo de superar essas limitações, neste trabalho são apresentados algoritmos e expressões (métricas) para medir a similaridade entre duas ontologias geográficas efetivamente, tanto em nível de instâncias quanto em nível de conceitos. Os algoritmos propostos combinam métricas para medir a similaridade considerando os aspectos não geográficos dos conceitos e instâncias com expressões criadas especificamente para tratar as características geográficas. Além disto, este trabalho também propõe um modelo para ontologia geográfica genérico, que pode servir como base para a criação de ontologias geográficas de forma padronizada. Este modelo é compatível com as recomendações do OGC e é a base para os algoritmos. Para validar estes algoritmos foi criada uma arquitetura de software chamada IG-MATCH a qual apresenta também a possibilidade de enriquecer a semântica das ontologias geográficas com relacionamentos topológicos e do tipo generalização/especialização através da análise de suas instâncias. / Integration of geographic information is becoming more important every day, due to the facility to exchange data through the Internet and the high cost to produce them. With the semantic web, the description of geographic information using ontologies is getting popular. To allow the integration, one of the steps in which many researches are focusing is the matching of geographic ontologies. A matching consists on measuring the similarity of the elements, namely either concepts or instances, of two (or more) given ontologies. The main problem with ontology matching is that the ontologies may be described by different communities, using different vocabularies and different perspectives. For geographic ontologies the difficulties may be even worse, for the particularities of the geographic information (geometry, location and spatial relationships) as well as due to the lack of a widely accepted geographic ontology model, and because the ontologies are usually described at different semantic granularities. The specificities of geographic ontologies make conventional matchers not suitable for matching geographic ontologies. On the other hand, the existing geographic ontology matchers are considerably limited in their functionality and deal with ontologies described in a particular perspective. To overcome the current limitations, in this work we present a number of similarity measurement expressions and algorithms to efficiently match two geographic ontologies, at both the concept and instance-level. These algorithms combine expressions used to assess the similarity of the so-called conventional features with expressions tailor made for covering the geographic particularities. Furthermore, this research also proposes a geographic ontology meta-model to serve as a basis for the development of geographic ontologies in order to standardize their description. This model is compliant with the OGC recommendations and is the basis upon which the algorithms are defined. For the evaluation of the algorithms, a software architecture called IG-MATCH was created with an additional feature of making possible to enrich the geographic ontologies with topological relationships and parent-child relationships by the analysis of the instances.
4

Towards effective geographic ontology semantic similarity assessment

Hess, Guillermo Nudelman January 2008 (has links)
A cada dia cresce a importância da integração de informações geográficas, em virtude da facilidade de intercambiar dados através da Internet e do alto custo de produção deste tipo de informação. Com o advento da web semântica, o uso de ontologias para descrever informações geográficas está se tornando popular. Para permitir a integração, um dos estágios no qual muitas pesquisas estão focando é o chamado matching das ontologias geográficas. Matching consiste na medida de similaridade entre os elementos de duas ou mais ontologias geográficas. Estes elementos são chamados de conceitos e instâncias. O principal problema enfrentado no matching de ontologias é que estas podem ser descritas por diferentes pessoas (ou grupos), utilizando vocabulários diferentes e perspectivas variadas. No caso de ontologias geográficas os problemas são ainda maiores, em razão das particularidades da informação geográfica (geometria, localização espacial e relacionamentos espaciais), em função da falta de um modelo para descrição de ontologias geográficas amplamente adotado e, também, porque as ontologias são, muitas vezes, descritas em diferentes níveis de granularidade semântica. Estas particularidades das ontologias geográficas torna os matchers convencionais inadequados para o matching de ontologias geográficas. Por outro lado, os matchers existentes para o domínio geográfico são bastante limitados e somente funcionam para ontologias descritas em um modelo específico. Com o objetivo de superar essas limitações, neste trabalho são apresentados algoritmos e expressões (métricas) para medir a similaridade entre duas ontologias geográficas efetivamente, tanto em nível de instâncias quanto em nível de conceitos. Os algoritmos propostos combinam métricas para medir a similaridade considerando os aspectos não geográficos dos conceitos e instâncias com expressões criadas especificamente para tratar as características geográficas. Além disto, este trabalho também propõe um modelo para ontologia geográfica genérico, que pode servir como base para a criação de ontologias geográficas de forma padronizada. Este modelo é compatível com as recomendações do OGC e é a base para os algoritmos. Para validar estes algoritmos foi criada uma arquitetura de software chamada IG-MATCH a qual apresenta também a possibilidade de enriquecer a semântica das ontologias geográficas com relacionamentos topológicos e do tipo generalização/especialização através da análise de suas instâncias. / Integration of geographic information is becoming more important every day, due to the facility to exchange data through the Internet and the high cost to produce them. With the semantic web, the description of geographic information using ontologies is getting popular. To allow the integration, one of the steps in which many researches are focusing is the matching of geographic ontologies. A matching consists on measuring the similarity of the elements, namely either concepts or instances, of two (or more) given ontologies. The main problem with ontology matching is that the ontologies may be described by different communities, using different vocabularies and different perspectives. For geographic ontologies the difficulties may be even worse, for the particularities of the geographic information (geometry, location and spatial relationships) as well as due to the lack of a widely accepted geographic ontology model, and because the ontologies are usually described at different semantic granularities. The specificities of geographic ontologies make conventional matchers not suitable for matching geographic ontologies. On the other hand, the existing geographic ontology matchers are considerably limited in their functionality and deal with ontologies described in a particular perspective. To overcome the current limitations, in this work we present a number of similarity measurement expressions and algorithms to efficiently match two geographic ontologies, at both the concept and instance-level. These algorithms combine expressions used to assess the similarity of the so-called conventional features with expressions tailor made for covering the geographic particularities. Furthermore, this research also proposes a geographic ontology meta-model to serve as a basis for the development of geographic ontologies in order to standardize their description. This model is compliant with the OGC recommendations and is the basis upon which the algorithms are defined. For the evaluation of the algorithms, a software architecture called IG-MATCH was created with an additional feature of making possible to enrich the geographic ontologies with topological relationships and parent-child relationships by the analysis of the instances.
5

Towards effective geographic ontology semantic similarity assessment

Hess, Guillermo Nudelman January 2008 (has links)
A cada dia cresce a importância da integração de informações geográficas, em virtude da facilidade de intercambiar dados através da Internet e do alto custo de produção deste tipo de informação. Com o advento da web semântica, o uso de ontologias para descrever informações geográficas está se tornando popular. Para permitir a integração, um dos estágios no qual muitas pesquisas estão focando é o chamado matching das ontologias geográficas. Matching consiste na medida de similaridade entre os elementos de duas ou mais ontologias geográficas. Estes elementos são chamados de conceitos e instâncias. O principal problema enfrentado no matching de ontologias é que estas podem ser descritas por diferentes pessoas (ou grupos), utilizando vocabulários diferentes e perspectivas variadas. No caso de ontologias geográficas os problemas são ainda maiores, em razão das particularidades da informação geográfica (geometria, localização espacial e relacionamentos espaciais), em função da falta de um modelo para descrição de ontologias geográficas amplamente adotado e, também, porque as ontologias são, muitas vezes, descritas em diferentes níveis de granularidade semântica. Estas particularidades das ontologias geográficas torna os matchers convencionais inadequados para o matching de ontologias geográficas. Por outro lado, os matchers existentes para o domínio geográfico são bastante limitados e somente funcionam para ontologias descritas em um modelo específico. Com o objetivo de superar essas limitações, neste trabalho são apresentados algoritmos e expressões (métricas) para medir a similaridade entre duas ontologias geográficas efetivamente, tanto em nível de instâncias quanto em nível de conceitos. Os algoritmos propostos combinam métricas para medir a similaridade considerando os aspectos não geográficos dos conceitos e instâncias com expressões criadas especificamente para tratar as características geográficas. Além disto, este trabalho também propõe um modelo para ontologia geográfica genérico, que pode servir como base para a criação de ontologias geográficas de forma padronizada. Este modelo é compatível com as recomendações do OGC e é a base para os algoritmos. Para validar estes algoritmos foi criada uma arquitetura de software chamada IG-MATCH a qual apresenta também a possibilidade de enriquecer a semântica das ontologias geográficas com relacionamentos topológicos e do tipo generalização/especialização através da análise de suas instâncias. / Integration of geographic information is becoming more important every day, due to the facility to exchange data through the Internet and the high cost to produce them. With the semantic web, the description of geographic information using ontologies is getting popular. To allow the integration, one of the steps in which many researches are focusing is the matching of geographic ontologies. A matching consists on measuring the similarity of the elements, namely either concepts or instances, of two (or more) given ontologies. The main problem with ontology matching is that the ontologies may be described by different communities, using different vocabularies and different perspectives. For geographic ontologies the difficulties may be even worse, for the particularities of the geographic information (geometry, location and spatial relationships) as well as due to the lack of a widely accepted geographic ontology model, and because the ontologies are usually described at different semantic granularities. The specificities of geographic ontologies make conventional matchers not suitable for matching geographic ontologies. On the other hand, the existing geographic ontology matchers are considerably limited in their functionality and deal with ontologies described in a particular perspective. To overcome the current limitations, in this work we present a number of similarity measurement expressions and algorithms to efficiently match two geographic ontologies, at both the concept and instance-level. These algorithms combine expressions used to assess the similarity of the so-called conventional features with expressions tailor made for covering the geographic particularities. Furthermore, this research also proposes a geographic ontology meta-model to serve as a basis for the development of geographic ontologies in order to standardize their description. This model is compliant with the OGC recommendations and is the basis upon which the algorithms are defined. For the evaluation of the algorithms, a software architecture called IG-MATCH was created with an additional feature of making possible to enrich the geographic ontologies with topological relationships and parent-child relationships by the analysis of the instances.
6

Semantic Matching for Stream Reasoning

Dragisic, Zlatan January 2011 (has links)
Autonomous system needs to do a great deal of reasoning during execution in order to provide timely reactions to changes in their environment. Data needed for this reasoning process is often provided through a number of sensors. One approach for this kind of reasoning is evaluation of temporal logical formulas through progression. To evaluate these formulas it is necessary to provide relevant data for each symbol in a formula. Mapping relevant data to symbols in a formula could be done manually, however as systems become more complex it is harder for a designer to explicitly state and maintain thismapping. Therefore, automatic support for mapping data from sensors to symbols would make system more flexible and easier to maintain. DyKnow is a knowledge processing middleware which provides the support for processing data on different levels of abstractions. The output from the processing components in DyKnow is in the form of streams of information. In the case of DyKnow, reasoning over incrementally available data is done by progressing metric temporal logical formulas. A logical formula contains a number of symbols whose values over time must be collected and synchronized in order to determine the truth value of the formula. Mapping symbols in formula to relevant streams is done manually in DyKnow. The purpose of this matching is for each variable to find one or more streams whose content matches the intended meaning of the variable. This thesis analyses and provides a solution to the process of semantic matching. The analysis is mostly focused on how the existing semantic technologies such as ontologies can be used in this process. The thesis also analyses how this process can be used for matching symbols in a formula to content of streams on distributed and heterogeneous platforms. Finally, the thesis presents an implementation in the Robot Operating System (ROS). The implementation is tested in two case studies which cover a scenario where there is only a single platform in a system and a scenario where there are multiple distributed heterogeneous platforms in a system. The conclusions are that the semantic matching represents an important step towards fully automatized semantic-based stream reasoning. Our solution also shows that semantic technologies are suitable for establishing machine-readable domain models. The use of these technologies made the semantic matching domain and platform independent as all domain and platform specific knowledge is specified in ontologies. Moreover, semantic technologies provide support for integration of data from heterogeneous sources which makes it possible for platforms to use streams from distributed sources.
7

Utilising semantic technologies for intelligent indexing and retrieval of digital images

Osman, T., Thakker, Dhaval, Schaefer, G. 15 October 2013 (has links)
Yes / Yes / The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing a colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as the exploitation of lexical databases for explicit semantic-based query expansion.
8

Semantic Processes For Constructing Composite Web Services

Kardas, Karani 01 September 2007 (has links) (PDF)
In Web service composition, service discovery and combining suitable services through determination of interoperability among different services are important operations. Utilizing semantics improves the quality and facilitates automation of these operations. There are several previous approaches for semantic service discovery and service matching. In this work, we exploit and extend these semantic approaches in order to make Web service composition process more facilitated, less error prone and more automated. This work includes a service discovery and service interoperability checking technique which extends the previous semantic matching approaches. In addition to this, as a guidance system for the user, a new semantic domain model is proposed that captures semantic relations between concepts in various ontologies.
9

Matching Performance Metrics with Potential Candidates : A computer automated solution to recruiting

Melin, Oscar January 2017 (has links)
Selecting the right candidate for a job can be a challenge. Moreover, there are significant costs associated with recruiting new talent. Thus there is a requirement for precision, accuracy, and neutrality from an organization when hiring a new employee. This thesis project focuses on the restaurant and hotel industry, an industrial sector that has traditionally used a haphazard set of recruiting methods. Unlike large corporations, restaurants cannot afford to hire dedicated recruiters. In addition, the primary medium used to find jobs and job seekers in this industry often obscure comparisons between relevant positions. The complex infrastructure of this industry requires a place where both recruiter and job seeker can access a standardized overview of the entire labor market. Introducing automation in hiring aims to better address these complex demands and is becoming a common practice throughout other industries, especially with the help of internet based recruitment and pre-selection of candidates. These solutions also have the potential to minimize risks of human bias when screening candidates. This thesis aims to minimize inefficiencies and errors associated with the existing manual recruitment screening process by addressing two main issues: the rate at which applicants can be screened and the quality of the resulting matches. This thesis first discusses and analyzes related work in automated recruitment in order to propose a refined solution suitable for the target area. This solution –semantic matching of jobs and candidates - is subsequently evaluated and tested in partnership with Cheffle, a service industry networking company. The thesis concludes with suggestions for potential improvements to Cheffle´s current system and details the viability of recruiting with the assistance of an automated semantic matching application. / Att välja den rätta kandidaten för ett jobb kan vara en utmaning. Det finns dessutom betydliga kostnader i att rekrytera ny arbetskraft. På grund därav finns det ett behov för noggrannhet och neutralitet från en organisation vid rekrytering av ny personal. Detta examensprojekt fokuserar på restaurang och hotellbranschen. Denna branchsektor har traditionellt sett använt undermåliga rekryteringsmetoder. Till skillnad från stora företag så kan inte restauranger avvara resurser för egna rekryterare. Därtill så försvårar de primära medierna för rekrytering i sektorn jämförelser mellan relaterade lediga jobb. Denna komplexa infrastruktur skapar ett behov av en plats där både företag och arbetssökande har tillgång till en standardiserad översikt av hela arbetsmarknaden. Introduktionen av automatisering har som syfte att bemöta dessa komplexa krav och blir alltmer vanligt inom andra branscher. Speciellt med hjälp av internetbaserad rekrytering och förval av jobbkandidater. Dessa lösningar har även potentialen att minimera risken för mänsklig subjektivitet och opartiskhet vid förval av jobbkandidater. Detta examensprojekt har som syfte att minimera ineffektiviteter och fel samhörande med den nuvarande manuella rekryteringsmetoden genom att tackla två huvudproblem: takten i vilken förvalet av arbetssökande kan göras och kvaliteten av detta förval. Detta examensprojekt inleder med en diskussion och analys av relaterade arbeten inom automatiserad rekrytering för att sedan presentera en möjlig lösning för det behandlade målområdet. Denna lösning – semantisk matchning av jobb och jobbsökande - är senare utvärderad och testad i samarbete med Cheffle, ett nätverksföretag inom serviceindustrin. Detta examensprojekt avslutar med lösningsförslag för potentiell förbättring till Cheffles nuvarande system och en slutsats om genomförbarheten av automatisering inom rekrytering.
10

Automatiserad matchning vid rekrytering / Automated matching in recruitment

Strand, Henrik January 2018 (has links)
För små företag utan rekryteringsansvarig person kan det var svårt att hitta rätt personal. Brist på sådana resurser är en påfrestning som leder till stress och mindre lyckade rekryteringar. Målet med arbetet var att hitta en lösning för att automatisera matchning i en rekryteringsprocess genom att ge förslag på relevanta personer som tidigare sökt jobb hos företag via Cheffle:s tjänst. Det finns flera olika sätt att matcha uppsättningar av data. I det här fallet användes maskininlärning som lösningsmetod. Detta implementerades tillsammans med en prototyp som hämtade in data om jobbet och den arbetssökande. Maskininlärningsmodellerna Supportvektormaskin och Artificiella Neural Nätverk använde sig av denna data för att betygsätta de arbetssökande. Detta utifrån hur väl de matchade jobbannonsen. Arbetets slutsats är att ingen modell hade tillräckligt hög precision i sina klassificeringar för att användas i en verklig implementation, detta då endast små mängder testdata fanns tillgänglig. Resultatet visade att maskininlärningsmodellerna Supportvektormaskin och Artificiella Neurala Nätverk visade potential för att kunna användas vid denna typ av matchning, men för att fastställa detta krävs mer träningsdata / It can be hard for a small company with no dedicated HR-role to find suiting recruits. A lack of resources takes a toll on the existing employees and increase stress that further harms recruiting. The goal of this work was to find a solution to automate matching in a recruitment process by suggesting relevant applicants that have previously used Cheffle. There are multiple ways of matching data. In the case of this study, machine learning was used. A prototype was developed. It collected data about a job and its related applicants. The data was then used by the machine learning models Support vector machine and Artificial Neural Network to classify the applicants by how closely they match the job position. The conclusion made in this work is that no model had a precision high enough in its classification to be used in a final implementation. The low precision in classification is likely a result of the small amount of test data available. The result showed that the machine learning models Support vector machine and Artificial Neural Network had potential in this type of matching. To firmly determine this the models would need to be tested with more test data.

Page generated in 0.0892 seconds