• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 19
  • 10
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characterization of Single Quantum Dot Blinking: Dwell Time Statistics and Electrochemical Control

Amecke-Mönnighoff, Nicole 20 May 2015 (has links)
This thesis addresses the observed fluorescence intermittency of single semiconductor nanocrystals, so called Quantum Dots (QDs), which is also referred to as blinking. Despite continuous excitation their fluorescence is randomly interrupted by dark periods that can last over several minutes. Especially the extraction of power law dwell time statistics in bright and dark states indicates very complex underlying processes that are not fully understood to date. Here two approaches are followed to reveal the nature of the blinking mechanism. One addresses the common threshold method for extraction of power law dwell times. Its performance is tested with simulations to a broad range of experimentally determined parameters. Strong deviations are found between input and extracted statistics dependent on input parameters themselves. A comparison with experimental data does not support the assignment of power law statistics for the bright state and indicates the existence of distinct blinking mechanisms. The second approach directly aims at the nature of the dark state, which is mostly attributed to charges in the QD or trap states in its vicinity. A method is developed to detect charging processes on single QDs with their fluorescence. Electrochemistry is combined with confocal microscopy also allowing evaluations of excited state lifetimes and emission spectra. Reduction and oxidation of the QD bands are successfully observed as a quenching of QD fluorescence. Single QD observations identify two independent blinking mechanisms, that are assigned to positive and negative charging. Positive charging is not only observed after hole injection but also the extraction of excited electrons. Three additional quenching mechanisms are identified, two of which are assigned to trap relaxation. Differences between two substrate electrodes demonstrate the importance of the substrate material.
12

Μη-γραμμικές οπτικές διαδικασίες σε δομημένο φωτονικό περιβάλλον / Nonlinear optical processes in structured photonic environment

Ευαγγέλου, Σοφία 10 June 2014 (has links)
Μια σχετικά νέα περιοχή έντονης ερευνητικής δραστηριότητας ασχολείται με τη μελέτη των οπτικών ιδιοτήτων κβαντικών συστημάτων (ατόμων/μορίων και ημιαγώγιμων κβαντικών τελειών) συζευγμένων με πλασμονικές (μεταλλικές) νανοδομές. Τα ισχυρά πεδία και ο έντονος περιορισμός του φωτός που σχετίζονται με τους πλασμονικούς συντονισμούς οδηγούν σε ισχυρή αλληλεπίδραση μεταξύ των ηλεκτρομαγνητικών πεδίων και των κβαντικών συστημάτων κοντά σε πλασμονικές νανοδομές. Επιπλέον, χρησιμοποιώντας τα κβαντικά συστήματα μπορεί να επιτευχθεί εξωτερικός έλεγχος των οπτικών ιδιοτήτων της υβριδικής φωτονικής δομής. Στη διδακτορική διατριβή μελετάται θεωρητικά και υπολογιστικά η οπτική απόκριση συμπλεγμάτων κβαντικών συστημάτων με μεταλλικές νανοδομές, δίνοντας έμφαση σε μη-γραμμικές και κβαντικές οπτικές διαδικασίες. Στα συστήματα αυτά τα επιφανειακά πλασμόνια των μεταλλικών νανοδομών επηρεάζουν σημαντικά, τόσο το ηλεκτρομαγνητικό πεδίο που αλληλεπιδρούν τα κβαντικά συστήματα, όσο και το ρυθμό αυθόρμητης εκπομπής των κβαντικών συστημάτων. Μελετάμε απλές και πολύπλοκες μεταλλικές νανοδομές, όπως μια μεταλλική νανοσφαίρα και μια διδιάστατη διάταξη διηλεκτρικών νανοσφαιρών επικαλυμμένων με μέταλλο (μεταλλικοί νανοφλοιοί). Τα κβαντικά συστήματα είναι άτομα/μόρια και κυρίως ημιαγώγιμες κβαντικές τελείες και περιγράφονται από συστήματα δύο, τριών και τεσσάρων ενεργειακών επιπέδων. Δείχνουμε ότι, φαινόμενα όπως δημιουργία κβαντικής συμβολής στην αυθόρμητη εκπομπή, σύμφωνη ελεγχόμενη αναστροφή πληθυσμού, οπτική διαφάνεια και κέρδος χωρίς αναστροφή πληθυσμού, δημιουργία αργού φωτός, τροποποιημένη οπτική μη-γραμμικότητα Kerr και μίξη τεσσάρων κυμάτων, όπως και φαινόμενα ελέγχου μέσω φάσης, εμφανίζονται στα κβαντικά συστήματα και τροποποιούνται σημαντικά λόγω της ύπαρξης της μεταλλικής νανοδομής. / A relatively new area of active research involves the study of the optical properties of quantum systems (atoms/molecules and semiconductor quantum dots) coupled to plasmonic (metallic) nanostructures. The large fields and the strong light confinement associated with the plasmonic resonances enable strong interaction between the electromagnetic field and quantum systems near plasmonic nanostructures. In addition, using the quantum system one may achieve external control of the optical properties of the hybrid photonic structure. In this thesis we analyze both theoretically and computationally the optical response of hybrid nanosystems comprised of quantum emitters and plasmonic nanostructures. We put emphasis on the study of nonlinear and quantum optical processes. In these systems the spontaneous decay rate and the electromagnetic field that interacts with the quantum emitter is significantly modified by the surface plasmons of the plasmonic nanostructures. We study cases of both simple and more involved plasmonic nanostructures. An example of a simple plasmonic nanostructure considered in this thesis is a metallic nanosphere, while a more involved one is a two-dimensional array of metal-coated dielectric nanospheres. The quantum systems are atoms/molecules and especially semiconductor quantum dots and are described by two-level, three-level or four-level systems. We find that several coherent optical phenomena that happen in the quantum systems can be strongly influenced by the presence of the plasmonic nanostructure. Specifically, we show that effects such as quantum interference in spontaneous emission, controlled population inversion, optical transparency and gain without inversion, slow light, enhanced nonlinear optical Kerr effect and four-wave mixing as well as phase-dependent absorption and dispersion profiles can be created and modified.
13

Photophysical Properties of Manganese Doped Semiconductor Nanocrystals

Hazarika, Abhijit January 2015 (has links) (PDF)
Electronic and optical properties of semiconducting nanocrystals, that can be engineered and manipulated by various ways like varying size, shape, composition, structure, has been a subject of intense research for more than last two decades. The size dependency of these properties in semiconductor nanocrystals is direct manifestation of the quantum confinement effect. Study of electronic and optical properties in smaller dimensions provides a platform to understand the evolution of fundamental bulk properties in the semiconductors, often leading to realization and exploration of entirely new and novel properties. Not only of fundamental interests, the semiconductor nanocrystals are also shown to have great technological implications in diverse areas. Besides size tunable properties, introduction of impurities, like transition metal ions, gives rise to new functionalities in the semicon-ductor nanocrystals. These materials, termed as doped semiconductor nanocrystals, have been the subject of great interest, mainly due to the their interesting optical properties. Among different transition metal doped semiconductor nanocrystals, manganese doped systems have drawn a lot on attention due to their certain advantages over other dopants. One of the major advantages of Mn doped semiconductor nanocrystals is that they do not suffer from the problem of self-absorption of emission, which quite often, is consid-ered detrimental in their undoped counterparts. The doped nanocrystals are known to produce a characteristic yellow-orange emission upon photoexcitation of the host that is relatively insensitive to the surface degradation of the host. This emission, originating from an atomic d-d transition of Mn2+ ions, has been a subject of extensive research in the recent past. In spite of the spin forbidden nature of the specific d-d transition, namely 6A1 −4 T1, these doped nanocrystals yield intense phosphorescence. However, one major drawback of utilizing this system for a wide range application has been the substantial inability of the community to tune the emission color of Mn-doped systems in spite of an intense effort over the years; the relative constancy of the emission color in these systems has been attributed to the essentially atomic nature of the optical transition involving localized Mn d levels. Interestingly, however, the Mn emission has a very broad spectral line-width in spite of its atomic-like origin. While the long (∼ 1 ms) emission life-time of the de-excitation process is well-studied and understood in terms of the spin and orbitally forbidden nature of the transition, there is little known concerning the process of energy transfer to the Mn from the host in the excitation step. In this thesis, we have studied the ultrafast dynamic processes involved in Mn emission and addressed the issues related to its tunability and spectral purity. Chapter 1 provides a brief introduction to the fundamental concepts relevant to the studies carried out in the subsequent chapters of this thesis. This chapter is started with a small preview of the nanomaterials in general, followed by a discussion on semiconducting nanomaterials, evolution of their electronic structure with dimensions and size as well as the effect of quantum confinement on their optical properties. As all the semiconducting nanomaterials studied in the thesis are synthesized via colloidal synthesis routes, a separate section is devoted on colloidal semiconducting nanomaterials, describing various ways of modifying or tuning their optical properties. This is followed by an introduction to the important class of materials “doped semiconductor nanocrystals”. With a general overview and brief history of these materials, we proceed to discuss about various aspects of manganese doped semiconductor nanocrystals in great details, highlighting the origin of the manganese emission and the associated carrier dynamics as well as different reported synthetic strategies to prepare these materials. The chapter is closed with the open questions related to manganese doped semiconductor nanocrystals and the scope of the present work. Chapter 2 describes different experimental and theoretical methods that have been employed to carry out different studies presented in the thesis. It includes common experimental techniques like UV-Vis absorption spectroscopy, steady-state and time-resolved photoluminescence spectroscopy used for optical measurements, X-ray diffraction, trans-mission electron microscopy and atomic absorption spectroscopy used for structural and elemental analysis. Experimental tools to perform special studies like transient absorption and single nanocrystal spectroscopy are also discussed. Finally, theoretical fitting method used to analyse various spectral data has been discussed briefly. Chapter 3 deals with the dynamic processes involved in the photoexcitation and emission in manganese doped semiconductor nanocrystals. For this study, Mn doped ZnCdS alloyed nanocrystal has been chosen as a model system. There are various radiative and nonrdiative recombination pathways of the photogenerated carriers and they often compete with each other. We have studied the dynamics of all possible pathways of carrier relaxation, viz. excitonic recombination, surface state emission and Mn d-d transition. The main highlight of this chapter is the determination of the time-scale to populate surface states and the Mn d-states after the photoexcitation of the host. Employing femtosecond pump-probe based transient absorption study we have shown that the Mn dopant states are populated within sub-picosecond of the host excitation, while it takes a few picoseconds to populate the surface states. Keeping in mind the typical life-time of the excitonic emission (∼ a few ns), the ultra-fast process of energy transfer from the host to the Mn ions explains why the presence of Mn dopant ions quenches the excitonic as well as the surface state emissions so efficiently. Chapter 4 presents a study of manganese emission in ZnS nanocrystals of different sizes. By varying the size of the ZnS host nanocrystal, we show that one can tune the Mn emission over a limited range. In particular, with a decrease in host size, the Mn emission has been observed to red-shift. We have attributed this shift in Mn emission to the change in the ratio of surface to bulk dopant ions with the variation of the host size, noting that the strength of the ligand field at the Mn site should depend on the position of the Mn ion relative to the surface due to a systematic lattice relaxation in such nanocrystals. The ligand field affects the emission wavelength directly by controlling the splitting of the t2 and e levels of Mn2+ ions. The surface dopant ions experience a strong ligand field due to distorted tetrahedral environment which leads to larger splitting of these t2 and e states. We further corroborated these results by performing doping concentration dependent emission and life-time studies. In Chapter 5 addresses two fundamental challenges related to manganese photolumines-cence, namely the lack of a substantial emission tunability and presence of a very broad spectral width (∼ 180-270 meV). The large spectral width is incompatible with atomic-like manganese 4T1 −6 A1 transition. On the other hand, if this emission is atomic in nature, it should be relatively unaffected by the nature of the host, though it can be manipulated to some extent as discussed in Chapter 3. The lack of Mn emission tunability and spectral purity together seriously limit the usefulness of Mn doped semiconductor nanocrystals. To understand why the Mn emission tunability range is very limited (typically 565-630 nm) and to understand the true nature of this emission, we carried out single nanocrystal imaging and spectroscopy on Mn doped ZnCdS alloyed nanocrystals. This study reveals that Mn emission, in fact, can vary over a much wider range (∼ 370 meV) and exhibits widths substantially lower (∼ 60-75 meV) than reported so far. We explained the occur-rence of Mn emission in this broad spectral range in terms of the possibility of a large number of symmetry inequivalent sites resulting from random substitution of Cd and Zn ions that leads to differing extent of ligand field contributions towards the splitting of Mn d-levels. The broad Mn emission observed in ensemble-averaged measurements is the result of contribution from Mn ions at different sites of varying ligand field strengths inside the NC. Chapter 6 presents a synthetic strategy to strain-engineer a nanocrystal host lattice for a controlled tuning of the ligand field effect of the doped Mn sites. It is realized synthesizing a strained quantum dot system with the structure ZnSe/CdSe/ZnSe. A larger lattice parameter of CdSe compared to that of ZnSe causes a strain field that is maximum near the interface, gradually decreasing towards the surface. We control the positioning of Mn dopant ions at different distances from the interface, thereby doping Mn at different predetermined strain fields. With the help of this strain engineering, we are able to tune Mn emission across the entire range of the visible spectrum. This strain induced tuning of Mn emission is accompanied by life-times that is dependent on the emission energy which has been explained in terms of perturbation effect on the Mn center due to the strain generated inside the quantum dot. The spectacular emission tuning has been explained by modelling the quantum dot system as an elastic continuum containing three distinct layers under hydrostatic pressure. From this modelling, we found that the strain is max-imum at the interface and decreases continuously as one goes away from the interface. We also show that the Mn emission maximum red shifts with increasing distance of the dopants from the maximum strained region. In summary, we have performed a study on the photophysical processes in manganese doped semiconductor nanocrystals. We have emphasized in understanding of different dynamic processes associated with the manganese emission and tried to understand the true nature of manganese emission in a nanocrystal. This study has brought out some new aspects of manganese emission and opened up possibilities to tune and control manganese emission by proper design of the host material.
14

Photoinduced hole trapping in single semiconductor quantum dots at specific sites at silicon oxide interfaces

Krasselt, Cornelius, Schuster, Jörg, von Borczyskowski, Christian 23 September 2013 (has links) (PDF)
Blinking dynamics of CdSe/ZnS semiconductor quantum dots (QD) are characterized by (truncated) power law distributions exhibiting a wide dynamic range in probability densities and time scales both for off- and on-times. QDs were immobilized on silicon oxide surfaces with varying grades of hydroxylation and silanol group densities, respectively. While the off-time distributions remain unaffected by changing the surface properties of the silicon oxide, a deviation from the power law dependence is observed in the case of on-times. This deviation can be described by a superimposed single exponential function and depends critically on the local silanol group density. Furthermore, QDs in close proximity to silanol groups exhibit both high average photoluminescence intensities and large on-time fractions. The effect is attributed to an interaction between the QDs and the silanol groups which creates new or deepens already existing hole trap states within the ZnS shell. This interpretation is consistent with the trapping model introduced by Verberk et al. (R. Verberk, A. M. van Oijen and M. Orrit, Phys. Rev. B, 2002, 66, 233202).
15

Study of Light-Matter Interaction at the Nanoscale with Quantum Dots in Photonic and Plasmonic Metamaterials

Indukuri, S R K Chaitanya January 2016 (has links) (PDF)
Optical properties of nanoscopic materials have been intensively pursued over last couple of decades due to their tunable optical properties. Recent interests in this field have been mainly focused on the preparation of ordered arrays of nano materials and study of their optical properties. These interests have been motivated by the applications of such systems for nano photonic devices. Theoretical predictions from such systems reveal complex absorption and emission properties, different from individual ones mainly because of energy transfer between them. These properties can be controlled further by preparing hybrid arrays of nanostructures, including nano crystals of different types. Hybrid arrays with semiconductor quantum dots and metallic nanoparticles are an example of such system. Optical properties of such a system can be tuned by controlling the interaction between excitons and plasmons. This thesis presents the experimental studies on optical properties of polymer capped nanoparticles, quantum dot arrays and hybrid arrays with semi conducting quantum dot and metal nanoparticles. A brief summary of the experimental methods and results have been highlighted below. In this thesis, we study the controlling decay dynamics of CdSe quantum dots by 2D photonic-plasmonic and metamaterial templates. In Chapter 1 we provide a detailed background on the theoretical methods of Light-Matter interaction at nano scale. We also have given the detailed information on both weak and strong coupling region in the light-matter interaction. This chapter includes the discussion controlling light-matter interaction with both photonic crystals and plasmonic materials with some appropriate examples from the literature. In this chapter we have also explained the relevance of our work in this area and organization of the chapters and there importance has given. In chapter 2 we provide details about various experimental methods used in this thesis. A brief introduction is given on the materials used, their synthesis and the preparation of different type of self assembled plasmonic-photonic templates. This chapter starts with an explanation of the materials used along with the justification; moves on to the preparation of different 2D wire metamaterial. The characterization techniques for these different types of templates like spectroscopic ellipsometer, atomic force spectroscopy, scanning electron microscopy and transmission electron microscopy are discussed. We also discussed optical spectroscopic techniques like confocal optical microscopy and near field optical microscopy techniques. The first two chapters form the basis of all the experiments discussed in the forth coming chapters. In chapter 3 Finite difference time domain (FDTD) simulations were performed on two different plasmonic sub wavelength photonic templates embedded with CdSe quantum dots. Tunable loading of these templates with plasmonic nano antenna allowed control of the emission from the embedded quantum dots. We discuss how large loading of nano antenna can effectively control the optical density of states for the quantum dots leading to enhancement of their radiative decay rates as observed in experiments. On the other hand, at low level of loading, while FDTD fails to capture the observed enhancement of decay rates in experiment, an alternative mechanism is suggested to exist in such cases. Thus, subtle interplay of multiple mechanisms engineered by appropriate placement and loading of plasmonic nano antenna in such templates is demonstrated as an effective method to control optical density of states and hence spontaneous emission of embedded quantum dots. In Chapter 4 we report results of controlled tuning of the local density of states (LDOS) in versatile, flexible and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nano antenna within a polymer template randomly dispersed with quantum dots, we show how the photo-luminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators. In chapter 5 we reported enhancement optical properties of quantum dot monolayers on top of the functional, flexible and hierarchical self-assembled plasmonic template using extremely small gold (Au) nanoparticles of diameter 5 nm. We reported how the LODS changes with different polarizations for CdSe quantum dot present on top of the template. We observed the enhanced radiative LDOS from the nano antenna filled pores indicating plasmonic enhanced emission from these templates. The difference in spectral and spatial profile of LDOS and Pur-cells with polarization of quantum dot emission results in the anisotropic emission in these templates. In chapter 6 we reported the emergence of strong coupling between quantum emitters and 2D hyperbolic metamaterials (HMM). We studied both spectral dependence and effect of filling fraction of the HMM on strong interaction. We also show the controlling of the transition from weak coupling region to strong coupling region by changing the distance between QD monolayer and HMM. By using FDTD simulation we are able to calculate both spectral function S(!) and coupling efficiency. In chapter 7 as a conclusion we concluded the work done in this thesis. We also indicated the future directions in this field and possible application.
16

Study of Optical Properties of Semiconductor Quantum Dot Based Hybrid Nano Assemblies

Mullapudi, Praveena January 2016 (has links) (PDF)
Over the last few decades, a vast research is going on, to study the optical properties of the nano particles i.e., metal and semiconductors thoroughly. Till date most of the optical studies are based on single particle measurement of a quantum dot (QD) or a chromophore under the influence of an external plasmonic field stimulus. In this the-sis, we tried to address the energy transfer at non local level on a layer of compact, monolayer QD assemblies over micro meter range. The energy transfer occurs in the presence of external field of metal particles or nanorods leads to the enhancement or quenching the emission from a layer of QDs. Chapter 1 is introduction to the basic theoretical aspects of excitons in semiconductor (QDs) and its optical properties under strong confinement regime. The discussion is followed with the optical properties of gold nanoparticles and rods, describing size and shape dependent variation of absorption properties, based on Mie and Mie-Gans theory. Theoretical background of collective effects in QD assemblies based on exciton-plasmonic interactions at single particle level as well as polarization based plasmo-nenhanced fluorescence has been subjected. Experimental techniques are explained in chapter 2 which contains the details of the synthesis of polymer capped nanoparticles with the respective characterization. A discussion on the synthesis methods for cadmium selenide QDs, gold nano particles and the rods with different polymer cap-ping legends and the related capping exchange methods. The thin film preparation of QD monolayers as well as hybrid nano assemblies using several techniques, i.e., Langmuir-Blodgett (LB), dip coat methods are provided. Further the details of surface morphology of the prepared thin films has been studied by different microscopic techniques i.e., atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The details of the PL emission measurements of these hybrid arrays using confocal, Raman and polarization based near field scanning optical microscope (NSOM) modes followed with the life time measurements. In third chapter, the substantial strong coupling and collective emission regime is engineered in the QD monolayer films embedded with tiny gold nano particles keeping the QD density same. Tuning the photoluminescence (PL) of semiconducting QD assemblies using small Au NPs in different ratio, different packing density and extent of spectral overlap between QD photoluminescence and the metal nanoparticle absorbance has been discussed. We provided possible experimental and theoretical evidence for the plasmon-mediated emergence of collective emission and enhanced quantum efficiency in these QD films with the consolidation of multiple emitters and multiple NPs. The quantum efficiency of these hybrid assemblies is further explored with different material as well as the size effect of metal nano particles. Chapter 4 comprises the experiment results of the self-assembled compact and partially aligned gold nano rod (GNR) arrays on QD monolayer films. We experimentally demonstrated the quantum efficiency of these QD hybrid assemblies is gaining max-imum when the longitudinal surface plasmon resonance (LSPR) absorption maxima of GNR arrays is resonant with the QD monolayer PL maxima and is always non-existent for the off resonant case. Further, we reported the variability in the size and morphology of these GNR domains leads to the maximum achieved enhancement as well as anisotropy value in comparison with isolated rods and the explored conditions to further enhance the efficiency in these QD hybrid assemblies.
17

Photoinduced hole trapping in single semiconductor quantum dots at specific sites at silicon oxide interfaces

Krasselt, Cornelius, Schuster, Jörg, von Borczyskowski, Christian 23 September 2013 (has links)
Blinking dynamics of CdSe/ZnS semiconductor quantum dots (QD) are characterized by (truncated) power law distributions exhibiting a wide dynamic range in probability densities and time scales both for off- and on-times. QDs were immobilized on silicon oxide surfaces with varying grades of hydroxylation and silanol group densities, respectively. While the off-time distributions remain unaffected by changing the surface properties of the silicon oxide, a deviation from the power law dependence is observed in the case of on-times. This deviation can be described by a superimposed single exponential function and depends critically on the local silanol group density. Furthermore, QDs in close proximity to silanol groups exhibit both high average photoluminescence intensities and large on-time fractions. The effect is attributed to an interaction between the QDs and the silanol groups which creates new or deepens already existing hole trap states within the ZnS shell. This interpretation is consistent with the trapping model introduced by Verberk et al. (R. Verberk, A. M. van Oijen and M. Orrit, Phys. Rev. B, 2002, 66, 233202).
18

Herstellung von Chalkogeniden für die Solarzellenanwendung über die MicroJet-Reaktor-Technologie

Hiemer, Julia 13 January 2023 (has links)
Im Rahmen der vorliegenden Arbeit wurden Metallchalkogenid-Nanopartikel bzw. Quantum Dots größenselektiv mittels kontinuierlicher MicroJet-Reaktor-Technologie in wässrigem Medium erzeugt. Aufgrund der sehr kurzen Mischzeiten im µs- bis ms-Bereich können Keimbildung und -wachstum im MicroJet-Reaktor zeitlich voneinander separiert werden. Die Begrenzung des Partikelwachstum durch den Einsatz von Stabilisatoren oder geringer Präkursorkonzentrationen ermöglichten die Synthese von monodispersen, nanokristallinen Produkten mit sehr schmaler Partikelgrößenverteilung. Ausgehend von den wasserlöslichen Präkursoren Cadmiumnitrat und Natriumsulfid wurde sowohl eine Synthesestrategie für elektrostatisch- als auch Liganden-stabilisierte CdS-Nanopartikel entwickelt. Es wurden zahlreiche Reaktionsparameter wie Temperatur, Präkursorverhältnis, Konzentration oder Fällungsmittel variiert und der Einfluss auf die Partikelgröße überprüft. In weiteren Untersuchungen konnte die Übertragbarkeit der MicroJet-Reaktor-Synthese auf die Metallchalkogenide Cadmiumzinksulfid, Silbersulfid und Silberindiumsulfid validiert werden. Auch komplexere Systeme wie Core/Shell Partikel sind mittels postsynthetischer Beschichtung der im MicroJet-Reaktor hergestellten Nanopartikel möglich. Erste Experimente zur Synthese von CdSe bestätigten die Eignung des kontinuierlichen Verfahrens zur Fällung höherer Chalkogenide.:1 Einleitung 1 1.1 Halbleiternanopartikel 3 1.1.1 Bandstruktur des Festkörpers 3 1.1.2 Interbandübergänge in direkten und indirekten Halbleitern 7 1.1.3 Quantum Confinement 15 1.2 Fällung von Nanopartikeln im MicroJet-Reaktor 20 1.2.1 Partikelbildung durch Kristallisation 20 1.2.2 Funktionsprinzip des MicroJet-Reaktors 22 1.2.3 State of the Art 25 1.3 Nanoskalige Metallchalkogenide 29 1.3.1 Cadmiumchalkogenide 29 1.3.2 Near-Infrared Quantum Dots 31 1.3.3 Core/Shell-Partikel 34 1.4 Zielsetzung 37 2 Ergebnisse und Diskussion 39 2.1 Allgemeines 39 2.2 Cadmiumchalkogenide 47 2.2.1 Hydrothermalsynthese von CdS im Laborautoklaven 47 2.2.1.1 Wiederholbarkeit 48 2.2.1.2 Einfluss des Präkursorverhältnis 50 2.2.1.3 Versuchsplanung zur Untersuchung ausgewählter Reaktionsparameter 51 2.2.1.4 Effektberechnung zur Untersuchung ausgewählter Einflussfaktoren 54 2.2.1.5 Beobachtungen und Charakterisierung 56 2.2.2 Kontinuierliche Synthese von CdS im MicroJet-Reaktor 62 2.2.2.1 MJR-Synthese von CdS aus Cd(NO3)2 und Na2S 62 2.2.2.2 MJR-Synthese von CdS aus Cd(NO3)2 und Thioacetamid 71 2.2.3 CdS/ZnS Core/Shell und Cd1-xZnxS Quantum Dots 76 2.2.3.1 CdS/ZnS Core/Shell Quantum Dots 77 2.2.3.2 Cd1-xZnxS Quantum Dots 88 2.2.4 Hydrothermalsynthese von CdSe im Laborautoklaven 99 2.2.4.1 Wiederholbarkeit 99 2.2.4.2 Präkursorverhältnis Cd2+:Se2- 101 2.2.4.3 Versuchsplanung zur Untersuchung ausgewählter Reaktionsparameter 104 2.2.4.4 Effektberechnung zur Untersuchung ausgewählter Einflussfaktoren 108 2.2.4.5 Beobachtungen und Charakterisierung 111 2.2.5 Kontinuierliche Synthese von CdSe im MicroJet-Reaktor 116 2.3 Near-Infrared Quantum Dots 121 2.3.1 Kontinuierliche Synthese von AgS2 im MJR-Reaktor 121 2.3.1.1 Elektrostatisch stabilisierte Ag2S Quantum Dots 121 2.3.1.2 Ag2S/ZnS Core/Shell Quantum Dots 138 2.3.1.3 Ligandenstabilisierte Ag2S Quantum Dots 143 2.3.2 Kontinuierliche Synthese von Indiumsilbersulfid im MJR-Reaktor 152 3 Experimenteller Teil 165 3.1 Synthesen 165 3.1.1 Verwendete Chemikalien 165 3.1.2 Hydrothermalsynthese im Laborautoklaven 166 3.1.2.1 Versuchsaufbau 166 3.1.2.2 Cadmiumsulfid 167 3.1.2.3 Cadmiumselenid 168 3.1.2.4 Silbersulfid 169 3.1.3 Kontinuierliche Synthese im MicroJet-Reaktor 169 3.1.3.1 Versuchsaufbau und Durchführung der MicroJet-Reaktor-Synthese 169 3.1.3.2 Synthese Liganden-stabilisierter Metallsulfide 171 3.1.3.3 Synthese elektrostatisch stabilisierter Metallsulfide 171 3.1.3.4 Synthese von Cadmiumselenid 172 3.1.3.5 Synthese von Core-Shell-Partikeln 172 3.2 Analytische Methoden 173 3.2.1 Dynamische Lichtstreuung (DLS) 173 3.2.2 Statische Lichtstreuung (SLS) 173 3.2.3 UV/Vis-Absorptionsspektroskopie 173 3.2.4 Photolumineszenz (PL)-Spektroskopie 174 3.2.5 Transmissionselektronenmikroskopie (TEM) 174 3.2.6 Rasterelektronenmikroskopie (REM) 175 3.2.7 Optische Emissionsspektroskopie mit induktiv gekoppeltem Plasma (ICP-OES) 175 3.2.8 Röntgenfluoreszenzanalyse (RFA) 176 3.2.9 Pulver-Röntgendiffraktometrie (PXRD) 176 3.2.10 RAMAN-Spektroskopie 177 3.2.11 Abgeschwächte Totalreflexions-Infrarotspektroskopie (ATR-FTIR) 177 4 Zusammenfassung und Ausblick 179 5 Literatur 182 6 Anhang 195 / In the present work, metal chalcogenide nanoparticles or Quantum Dots were obtained size-selectively using continuous MicroJet Reactor technology. Due to the short mixing times in the µs to ms range, crystallite nucleation and crystal growth are well separated and enable concentration-limited particle growth. Alternatively, particle growth can be limited by stabilizers. Starting from the water-soluble precursors Cd(NO3)2 and Na2S, a synthesis strategy for both electrostatic and ligand stabilized CdS nanoparticles in aqueous medium was developed. The nanocrystalline products obtained were characterized by a narrow, monodisperse particle size distribution. Examining the influence of the particle size, numerous reaction parameters e. g. temperature, ratio of precursors, concentration or precipitant were varied. In further investigations, the transferability of the MicroJet Reactor synthesis to the metal chalcogenides (Cd,Zn)S, Ag2S and AgInS2 was validated. By means of post-synthetic coating of the nanoparticles produced in the MicroJet Reactor, more complex systems such as CdS/ZnS or Ag2S/ZnS core/shell particles are accessible. Initial experiments on the synthesis of CdSe confirmed the suitability of the continuous process for precipitation of selenides.:1 Einleitung 1 1.1 Halbleiternanopartikel 3 1.1.1 Bandstruktur des Festkörpers 3 1.1.2 Interbandübergänge in direkten und indirekten Halbleitern 7 1.1.3 Quantum Confinement 15 1.2 Fällung von Nanopartikeln im MicroJet-Reaktor 20 1.2.1 Partikelbildung durch Kristallisation 20 1.2.2 Funktionsprinzip des MicroJet-Reaktors 22 1.2.3 State of the Art 25 1.3 Nanoskalige Metallchalkogenide 29 1.3.1 Cadmiumchalkogenide 29 1.3.2 Near-Infrared Quantum Dots 31 1.3.3 Core/Shell-Partikel 34 1.4 Zielsetzung 37 2 Ergebnisse und Diskussion 39 2.1 Allgemeines 39 2.2 Cadmiumchalkogenide 47 2.2.1 Hydrothermalsynthese von CdS im Laborautoklaven 47 2.2.1.1 Wiederholbarkeit 48 2.2.1.2 Einfluss des Präkursorverhältnis 50 2.2.1.3 Versuchsplanung zur Untersuchung ausgewählter Reaktionsparameter 51 2.2.1.4 Effektberechnung zur Untersuchung ausgewählter Einflussfaktoren 54 2.2.1.5 Beobachtungen und Charakterisierung 56 2.2.2 Kontinuierliche Synthese von CdS im MicroJet-Reaktor 62 2.2.2.1 MJR-Synthese von CdS aus Cd(NO3)2 und Na2S 62 2.2.2.2 MJR-Synthese von CdS aus Cd(NO3)2 und Thioacetamid 71 2.2.3 CdS/ZnS Core/Shell und Cd1-xZnxS Quantum Dots 76 2.2.3.1 CdS/ZnS Core/Shell Quantum Dots 77 2.2.3.2 Cd1-xZnxS Quantum Dots 88 2.2.4 Hydrothermalsynthese von CdSe im Laborautoklaven 99 2.2.4.1 Wiederholbarkeit 99 2.2.4.2 Präkursorverhältnis Cd2+:Se2- 101 2.2.4.3 Versuchsplanung zur Untersuchung ausgewählter Reaktionsparameter 104 2.2.4.4 Effektberechnung zur Untersuchung ausgewählter Einflussfaktoren 108 2.2.4.5 Beobachtungen und Charakterisierung 111 2.2.5 Kontinuierliche Synthese von CdSe im MicroJet-Reaktor 116 2.3 Near-Infrared Quantum Dots 121 2.3.1 Kontinuierliche Synthese von AgS2 im MJR-Reaktor 121 2.3.1.1 Elektrostatisch stabilisierte Ag2S Quantum Dots 121 2.3.1.2 Ag2S/ZnS Core/Shell Quantum Dots 138 2.3.1.3 Ligandenstabilisierte Ag2S Quantum Dots 143 2.3.2 Kontinuierliche Synthese von Indiumsilbersulfid im MJR-Reaktor 152 3 Experimenteller Teil 165 3.1 Synthesen 165 3.1.1 Verwendete Chemikalien 165 3.1.2 Hydrothermalsynthese im Laborautoklaven 166 3.1.2.1 Versuchsaufbau 166 3.1.2.2 Cadmiumsulfid 167 3.1.2.3 Cadmiumselenid 168 3.1.2.4 Silbersulfid 169 3.1.3 Kontinuierliche Synthese im MicroJet-Reaktor 169 3.1.3.1 Versuchsaufbau und Durchführung der MicroJet-Reaktor-Synthese 169 3.1.3.2 Synthese Liganden-stabilisierter Metallsulfide 171 3.1.3.3 Synthese elektrostatisch stabilisierter Metallsulfide 171 3.1.3.4 Synthese von Cadmiumselenid 172 3.1.3.5 Synthese von Core-Shell-Partikeln 172 3.2 Analytische Methoden 173 3.2.1 Dynamische Lichtstreuung (DLS) 173 3.2.2 Statische Lichtstreuung (SLS) 173 3.2.3 UV/Vis-Absorptionsspektroskopie 173 3.2.4 Photolumineszenz (PL)-Spektroskopie 174 3.2.5 Transmissionselektronenmikroskopie (TEM) 174 3.2.6 Rasterelektronenmikroskopie (REM) 175 3.2.7 Optische Emissionsspektroskopie mit induktiv gekoppeltem Plasma (ICP-OES) 175 3.2.8 Röntgenfluoreszenzanalyse (RFA) 176 3.2.9 Pulver-Röntgendiffraktometrie (PXRD) 176 3.2.10 RAMAN-Spektroskopie 177 3.2.11 Abgeschwächte Totalreflexions-Infrarotspektroskopie (ATR-FTIR) 177 4 Zusammenfassung und Ausblick 179 5 Literatur 182 6 Anhang 195
19

Ultrafast Exciton Dynamics and Optical Control in Semiconductor Quantum Dots

Wijesundara, Kushal Chinthaka 26 July 2012 (has links)
No description available.

Page generated in 0.0832 seconds