1 |
Design and analysis of sense amplifier circuits used in high-performance and low-power SRAMsPalatham-Veedu, Sajith Ahamed 07 November 2011 (has links)
Performance and power of sense amplifiers have big implications on the speed of caches used in microprocessors as well as power consumption of IPs in low power system on chips. The speed of voltage sense amplifiers are limited by the differential voltage development time on high capacitance SRAM bit-lines. The dynamic power increases with the differential voltage that needs to be developed on the bit-lines. This report explores multiple sense amplifier techniques - in addition to the conventional voltage sense amplifier, it analyzes current sense amplifier, charge transfer sense amplifier as wells as current latched sense amplifier and compares them in speed, area and power consumption to the voltage sense amplifier. A current sense amplifier operates by sensing the bit cell current directly and shows power and area advantages. A charge transfer sense amplifier makes use of charge redistribution between the high capacitance bit-lines and low capacitance sense amplifier output nodes to provide power benefits. This report also explores the design of a six transistor SRAM bit cell. All circuits are designed and simulated on a 45nm CMOS process. / text
|
2 |
A comparison of full swing and partial swing SRAM read topologiesTruong, Bao Gia 2009 August 1900 (has links)
This paper outlines design considerations and implementation details of full swing and of partial swing SRAM arrays. Comparisons between the two methods based on performance, power, and noise rejection are then presented. Finally, a decision matrix will be provided that selects the better topology based on varying design constraints. / text
|
3 |
Low-Power, Low-Voltage SRAM Circuits Design For Nanometric CMOS TechnologiesShakir, Tahseen 29 August 2011 (has links)
Embedded SRAM memory is a vital component in modern SoCs. More than 80% of the System-on-Chip (SoC) die area is often occupied by SRAM arrays. As such, system reliability and yield is largely governed by the SRAM's performance and robustness. The aggressive scaling trend in CMOS device minimum feature size, coupled with the growing demand in high-capacity memory integration, has imposed the use of minimal size devices to realize a memory bitcell. The smallest 6T SRAM bitcell to date occupies a 0.1um2 in silicon area. SRAM bitcells continue to benefit from an aggressive scaling trend in CMOS technologies. Unfortunately, other system components, such as interconnects, experience a slower scaling trend. This has resulted in dramatic deterioration in a cell's ability to drive a heavily-loaded interconnects. Moreover, the growing fluctuation in device properties due to Process, Voltage, and Temperature (PVT) variations has added more uncertainty to SRAM operation. Thus ensuring the ability of a miniaturized cell to drive heavily-loaded bitlines and to generate adequate voltage swing is becoming challenging. A large percentage of state-of-the-art SoC system failures are attributed to the inability of SRAM cells to generate the targeted bitline voltage swing within a given access time.
The use of read-assist mechanisms and current mode sense amplifiers are the two key strategies used to surmount bitline loading effects. On the other hand, new bitcell topologies and cell supply voltage management are used to overcome fluctuations in device properties. In this research we tackled conventional 6T SRAM bitcell limited drivability by introducing new integrated voltage sensing schemes and current-mode sense amplifiers. The proposed schemes feature a read-assist mechanism. The proposed schemes' functionality and superiority over existing schemes are verified using transient and statistical SPICE simulations. Post-layout extracted views of the devices are used for realistic simulation results.
Low-voltage operated SRAM reliability and yield enhancement is investigated and a
wordline boost technique is proposed as a means to manage the cell's WL operating voltage. The proposed wordline driver design shows a significant improvement in reliability and yield in a 400-mV 6T SRAM cell. The proposed wordline driver design exploit the cell's Dynamic Noise Margin (DNM), therefore boost peak level and boost decay rate programmability features are added. SPICE transient and statistical simulations are used to verify the proposed design's functionality.
Finally, at a bitcell-level, we proposed a new five-transistor (5T) SRAM bitcell which shows competitive performance and reliability figures of merit compared to the conventional 6T bitcell. The functionality of the proposed cell is verified by post-layout SPICE simulations. The proposed bitcell topology is designed, implemented and fabricated in a standard ST CMOS 65nm technology process. A 1.2_ 1.2 mm2 multi-design project test chip consisting of four 32-Kbit (256-row x 128-column) SRAM macros with the required peripheral and timing control units is fabricated. Two of the designed SRAM macros are dedicated for this work, namely, a 32-Kbit 5T macro and a 32-Kbit 6T macro which is used as a comparison reference. Other macros belong to other projects and are not discussed in this document.
|
4 |
Study of High Speed Main Amplifier and Low Power Peripheral Circuits for Low Supply Voltage Dynamic Random Access MemoryChang, Yao-Sheng 09 July 2001 (has links)
Three high performance circuits for a low power supply DRAM¡¦s are presented in this thesis. First, a modified multi-stage sense amplifier is proposed, that utilizes the auxiliary transmission gate and charge recycling technique. The auxiliary NMOS transistor of the multi-stage sense amplifier is replaced by the transmission gate to improve the sensing speed. In addition, the charge recycling technique is used to reduce the power dissipation of multi-stage sense amplifier. It improves the sensing time by 6.1ns (24.4%) compared to that of the conventional multi-stage sense amplifier and the power saving percentage of 25.6% compared to that of the conventional one. Second, an improved Standby Power Reduction (SPR) Circuit is reported. The capacitor boosting technique is utilized in our proposed Static Current Cut-off Standby Power Reduction (SCCSPR) Circuit, which turns off the always-on MOS transistor of SPR circuit. The power consumption is 30.9% reduced by our design compared to that of the conventional SPR circuit. Third, an improved voltage doubler is developed. The indirect switch is utilized in our proposed circuit, it provides larger gate source bias applied to the PMOS pass transistor. Thus, the current drivability is arisen and the pumping speed is improved as well. In the 2V supply voltage, the pumping speed of our modified voltage doubler is arisen about 18.6% compared to that of the conventional voltage doubler.
These high performance circuits in this thesis are applied in a 1-Kbit DRAM circuits. A data access time of 36ns and total power consumption 52.58mW are attained when the supply voltage is 2V. The access time of 10.3ns (22.2%) and power consumption of 6.44mW (11%) are reduced compared to that of the conventional DRAM.
|
5 |
Low-Power, Low-Voltage SRAM Circuits Design For Nanometric CMOS TechnologiesShakir, Tahseen 29 August 2011 (has links)
Embedded SRAM memory is a vital component in modern SoCs. More than 80% of the System-on-Chip (SoC) die area is often occupied by SRAM arrays. As such, system reliability and yield is largely governed by the SRAM's performance and robustness. The aggressive scaling trend in CMOS device minimum feature size, coupled with the growing demand in high-capacity memory integration, has imposed the use of minimal size devices to realize a memory bitcell. The smallest 6T SRAM bitcell to date occupies a 0.1um2 in silicon area. SRAM bitcells continue to benefit from an aggressive scaling trend in CMOS technologies. Unfortunately, other system components, such as interconnects, experience a slower scaling trend. This has resulted in dramatic deterioration in a cell's ability to drive a heavily-loaded interconnects. Moreover, the growing fluctuation in device properties due to Process, Voltage, and Temperature (PVT) variations has added more uncertainty to SRAM operation. Thus ensuring the ability of a miniaturized cell to drive heavily-loaded bitlines and to generate adequate voltage swing is becoming challenging. A large percentage of state-of-the-art SoC system failures are attributed to the inability of SRAM cells to generate the targeted bitline voltage swing within a given access time.
The use of read-assist mechanisms and current mode sense amplifiers are the two key strategies used to surmount bitline loading effects. On the other hand, new bitcell topologies and cell supply voltage management are used to overcome fluctuations in device properties. In this research we tackled conventional 6T SRAM bitcell limited drivability by introducing new integrated voltage sensing schemes and current-mode sense amplifiers. The proposed schemes feature a read-assist mechanism. The proposed schemes' functionality and superiority over existing schemes are verified using transient and statistical SPICE simulations. Post-layout extracted views of the devices are used for realistic simulation results.
Low-voltage operated SRAM reliability and yield enhancement is investigated and a
wordline boost technique is proposed as a means to manage the cell's WL operating voltage. The proposed wordline driver design shows a significant improvement in reliability and yield in a 400-mV 6T SRAM cell. The proposed wordline driver design exploit the cell's Dynamic Noise Margin (DNM), therefore boost peak level and boost decay rate programmability features are added. SPICE transient and statistical simulations are used to verify the proposed design's functionality.
Finally, at a bitcell-level, we proposed a new five-transistor (5T) SRAM bitcell which shows competitive performance and reliability figures of merit compared to the conventional 6T bitcell. The functionality of the proposed cell is verified by post-layout SPICE simulations. The proposed bitcell topology is designed, implemented and fabricated in a standard ST CMOS 65nm technology process. A 1.2_ 1.2 mm2 multi-design project test chip consisting of four 32-Kbit (256-row x 128-column) SRAM macros with the required peripheral and timing control units is fabricated. Two of the designed SRAM macros are dedicated for this work, namely, a 32-Kbit 5T macro and a 32-Kbit 6T macro which is used as a comparison reference. Other macros belong to other projects and are not discussed in this document.
|
6 |
A Process Variation Tolerant Self-Compensation Sense Amplifier DesignChoudhary, Aarti 01 January 2008 (has links) (PDF)
As we move under the aegis of the Moore's law, we have to deal with its darker side with problems like leakage and short channel effects. Once we go beyond 45nm regime process variations also have emerged as a significant design concern.Embedded memories uses sense amplifier for fast sensing and typically, sense amplifiers uses pair of matched transistors in a positive feedback environment. A small difference in voltage level of applied input signals to these matched transistors is amplified and the resulting logic signals are latched. Intra die variation causes mismatch between the sense transistors that should ideally be identical structures. Yield loss due to device and process variations has never been so critical to cause failure in circuits. Due to growth in size of embedded SRAMs as well as usage of sense amplifier based signaling techniques, process variations in sense amplifiers leads to significant loss of yield for that we need to come up with process variation tolerant circuit styles and new devices. In this work impact of transistor mismatch due to process variations on sense amplifier is evaluated and this problem is stated. For the solution of the problem a novel self compensation scheme on sense amplifiers is presented on different technology nodes up to 32nm on conventional bulk MOSFET technology. Our results show that the self compensation technique in the conventional bulk MOSFET latch type sense amplifier not just gives improvement in the yield but also leads to improvement in performance for latch type sense amplifiers. Lithography related CD variations, fluctuations in dopant density, oxide thickness and parametric variations of devices are identified as a major challenge to the classical bulk type MOSFET. With the emerging nanoscale devices, SIA roadmap identifies FinFETs as a candidate for post-planar end-of-roadmap CMOS device. With current technology scaling issues and with conventional bulk type MOSFET on 32nm node our technique can easily be applied to Double Gate devices. In this work, we also develop the model of Double Gate MOSFET through 3D Device Simulator Damocles and TCAD simulator. We propose a FinFET based process variation tolerant sense amplifier design that exploits the back gate of FinFET devices for dynamic compensation against process variations. Results from statistical simulation show that the proposed dynamic compensation is highly effective in restoring yield at a level comparable to that of sense amplifiers without process variations. We created the 32nm double gate models generated from Damocles 3-D device simulations [25] and Taurus Device Simulator available commercially from Synopsys [47] and use them in the nominal latch type sense amplifier design and on the Independent Gate Self Compensation Sense Amplifier Design (IGSSA) to compare the yield and performance benefits of sense amplifier design on FinFET technology over the conventional bulk type CMOS based sense amplifier on 32nm technology node effective in restoring yield at a level comparable to that of sense amplifiers without process variations. We created the 32nm double gate models generated from Damocles 3-D device simulations [25] and Taurus Device Simulator available commercially from Synopsys [47] and use them in the nominal latch type sense amplifier design and on the Independent Gate Self Compensation Sense Amplifier Design (IGSSA) to compare the yield and performance benefits of sense amplifier design on FinFET technology over the conventional bulk type CMOS based sense amplifier on 32nm technology node.
|
7 |
Návrh a optimalizace spínaného komparátoru v 250 nm CMOS technologii / Design and parameters optimization of latched comparator in 250 nm CMOS processMatěj, Jan January 2017 (has links)
This diploma thesis deals with design methods and optimization techniques of dynamic latched comparators. It compares latched and continuous comparators and describes their principle. Then it analyses three popular latched comparator structures with respect to offset, speed and kickback noise. It shows practical comparator design focused on offset precision.
|
8 |
High Sensitivity CMOS Voltage-to-Frequency Converter and High-Speed Current-Mode Sense Amplifier for SRAMsLi, Chih-Chen 23 June 2003 (has links)
The first topic of this thesis is to propose a novel voltage-to-frequency converter (VFC) to provide high sensitivity. The VFC circuit is composed of one current mirror, one current multiplier, and voltage window comparators. The proposed VFC tracks the variations of the stored charge of a built-in capacitor. The voltage window comparator monitors the voltage of the capacitor to determine whether the output is pulled high or pulled down. The worth-case linear range of the output frequency of the proposed VFC is 0 to 55 MHz provided that the input voltage is 0 to 0.9 V. The error is less than 9% while the power dissipation is 0.218 mW.
The second topic is to carry out a novel CMOS current-mode high- speed sense amplifier (SA). The proposed SA is composed by cascading a current-mode sense amplifier and a voltage-mode sense amplifier. The small input impedance of the current-mode amplifier alleviates the loading effect on the bitlines of SRAM cells such that the sensing speed is enhanced. The voltage-mode amplifier is responsible for boosting the logic levels to full swing. The worst access time of the proposed design is found to be less than 1.26 ns with a 1 pF load on outputs. The power dissipation is merely 0.835 mW at 793 MHz.
|
9 |
Low-Power Soft-Error-Robust Embedded SRAMShah, Jaspal Singh 06 November 2014 (has links)
Soft errors are radiation-induced ionization events (induced by energetic particles like alpha particles, cosmic neutron, etc.) that cause transient errors in integrated circuits. The circuit can always recover from such errors as the underlying semiconductor material is not
damaged and hence, they are called soft errors. In nanometer technologies, the reduced node capacitance and supply voltage coupled with high packing density and lack of masking mechanisms are primarily responsible for the increased susceptibility of SRAMs towards soft errors. Coupled with these are the process variations (effective length, width, and threshold voltage), which are prominent in scaled-down technologies. Typically, SRAM constitutes up to 90% of the die in microprocessors and SoCs (System-on-Chip). Hence, the soft errors in SRAMs pose a potential threat to the reliable operation of the system.
In this work, a soft-error-robust eight-transistor SRAM cell (8T) is proposed to establish a balance between low power consumption and soft error robustness. Using metrics like access time, leakage power, and sensitivity to single event transients (SET), the proposed approach is evaluated. For the purpose of analysis and comparisons the results of 8T cell are compared with a standard 6T SRAM cell and the state-of-the-art soft-error-robust
SRAM cells. Based on simulation results in a 65-nm commercial CMOS process, the 8T cell
demonstrates higher immunity to SETs along with smaller area and comparable leakage
power. A 32-kb array of 8T cells was fabricated in silicon. After functional verification of the test chip, a radiation test was conducted to evaluate the soft error robustness.
As SRAM cells are scaled aggressively to increase the overall packing density, the smaller transistors exhibit higher degrees of process variation and mismatch, leading to larger offset voltages. For SRAM sense amplifiers, higher offset voltages lead to an increased likelihood of an incorrect decision. To address this issue, a sense amplifier capable of cancelling the
input offset voltage is presented. The simulated and measured results in 180-nm technology show that the sense amplifier is capable of detecting a 4 mV differential input signal under dc and transient conditions. The proposed sense amplifier, when compared with a conventional sense amplifier, has a similar die area and a greatly reduced offset voltage. Additionally, a dual-input sense amplifier architecture is proposed with corroborating silicon results to show that it requires smaller differential input to evaluate correctly.
|
10 |
Emerging Power-Gating Techniques for Low Power Digital CircuitsHenry, Michael B. 29 November 2011 (has links)
As transistor sizes scale down and levels of integration increase, leakage power has become a critical problem in modern low-power microprocessors. This is especially true for ultra-low-voltage (ULV) circuits, where high levels of leakage force designers to chose relatively high threshold voltages, which limits performance. In this thesis, an industry-standard technique known as power-gating is explored, whereby transistors are used to disconnect the power from idle portions of a chip. Present power-gating implementations suffer from limitations including non-zero off-state leakage, which can aggregate to a large amount of wasted energy during long idle periods, and high energy overhead, which limits its use to long-term system-wide sleep modes. As this thesis will show however, by vastly increasing the effectiveness of power-gating through the use of emerging technologies, and by implementing aggressive hardware-oriented power-gating policies, leakage in microprocessors can be eliminated to a large extent. This allows the threshold voltage to be lowered, leading to ULV microprocessors with both low switching energy and high performance.
The first emerging technology investigated is the Nanoelectromechnical-Systems (NEMS) switch, which is a CMOS-compatible mechanical relay with near-infinite off-resistance and low on-resistance. When used for power-gating, this switch completely eliminates off-state leakage, yet is compact enough to be contained on die. This has tremendous benefits for applications with long sleep times. For example, a NEMS-power-gated architecture performing an FFT per hour consumes 30 times less power than a transistor-power-gated architecture. Additionally, the low on-resistance can lower power-gating area overhead by 36-83\%.
The second technology targets the high energy overhead associated with powering a circuit on and off. This thesis demonstrates that a new logic style specifically designed for ULV operation, Sense Amplifier Pass Transistor Logic (SAPTL), requires power-gates that are 8-10 times smaller, and consumes up to 15 times less boot-up energy, compared to static-CMOS. These abilities enable effective power-gating of an SAPTL circuit, even for very short idle periods. Microprocessor simulations demonstrate that a fine-grained power-gating policy, along with this drastically lower overhead, can result in up to a 44\% drop in energy.
Encompassing these investigations is an energy estimation framework built around a cycle-accurate microprocessor simulator, which allows a wide range of circuit and power-gating parameters to be optimized. This framework implements two hardware-based power-gating schedulers that are completely invisible to the OS, and have extremely low hardware overhead, allowing for a large number of power-gated regions. All together, this thesis represents the most complete and forward-looking study on power-gating in the ULV region. The results demonstrate that aggressive power-gating allows designers to leverage the very low switching energy of ULV operation, while achieving performance levels that can greatly expand the capabilities of energy-constrained systems. / Ph. D.
|
Page generated in 0.0821 seconds