51 |
Vaspin (serpinA12) in obesity, insulin resistance, and inflammationHeiker, John T. 06 March 2019 (has links)
While genome‐wide association studies as well as candidate gene studies have revealed a great deal of insight into the contribution of genetics to obesity development and susceptibility, advances in adipose tissue research have substantially changed the understanding of adipose tissue function. Its perception has changed from passive lipid storage tissue to active endocrine organ regulating and modulating whole‐body energy homeostasis and metabolism and inflammatory and immune responses by secreting a multitude of bioactive molecules, termed adipokines.
The expression of human vaspin (serpinA12) is positively correlated to body mass index and insulin sensitivity and increases glucose tolerance in vivo, suggesting a compensatory role in response to diminished insulin signaling in obesity. Recently, considerable insight has been gained into vaspin structure, function, and specific target tissue‐dependent effects, and several lines of evidence suggest vaspin as a promising candidate for drug development for the treatment of obesity‐related insulin resistance and inflammation. These will be summarized in this review with a focus on molecular mechanisms and pathways.
|
52 |
Characterisation of free and conjugated protease inhibitors from Solanum tuberosumLundmark, Kristoffer January 2017 (has links)
The main purpose of the master thesis project is to investigate the influence of selected serine protease inhibitors (SPI) on the catalytic action of the serine proteases chymotrypsin and trypsin, in a conjugated and non-conjugated state. The inhibitors included for this study were extracted from Solanum tuberosum, i.e.common potato. The purification method included in this study consist of crude extraction by mixer, followed by a salt-out procedure with ammonium sulphate. Further purification steps were cation exchange chromatography and, finally, gel filtration to obtain SPI of high purity. The purified sample was then characterized by SDS-page and kinetic activity measurement of trypsin and chymotrypsin action on synthetic substrate derivate, N-Benzoyl-DL-arginine-4-nitroanilide hydrochloride (BAPA) and N-Succinyl-L-phenylalanine-p-nitroaniline (SFpNA) respectively. The characterization showed inhibitory inactivation of both pancreatic proteases. This would indicate successful extraction of SPI. To investigate inhibitory action in a conjugated state, either enzyme or inhibitor was immobilized onto aluminium oxide membranes. Then two different experimental setups were tested, called experiment 1 and 2. In experiment 1, the inhibitor was immobilized and the interaction was monitored from a retention shift of enzyme flow-through compared to a blank column, using detection at 280 nm of the enzyme. In experiment 2 the enzyme was instead immobilized and a mixture of inhibitor and substrate was circulated with monitoring of the catalytic activity. The main goal was thus to measure the effects on the kinetics in the conjugated state compared to enzyme and inhibitor in the free state. The result from both experiment 1 and 2 did not yield consistent and reliable result so the discussed method should be regarded as preliminary results. The study also includes investigation of inhibitor-enzyme interaction as revealed by molecular mass data to determine complex formation. This part was conducted with static light scattering analysis to determine the stoichiometry for the interaction between pancreas proteases and the inhibitor. Results from light scattering showed promising indication of many-to-one interaction between enzyme and inhibitor, which have been seen by previous studies. It should be considered a preliminary result as complex formation does not exclude aggregation of enzymes or inhibitor in the solution.
|
53 |
Impact des facteurs micro-environnementaux de l'hôte sur la colonisation instestinale des Escherichia Coli adhérents et invasifs. / Impact of microenvironmental host factors on the gut colonization of adherent-invasive Escherichia coliGibold-Lyonne, Lucie 28 September 2016 (has links)
La maladie de Crohn (MC) est une affection inflammatoire chronique du tube digestif dont l’étiologie est multifactorielle. Les lésions intestinales des patients atteints de MC sont anormalement colonisées par des souches pathogènes d’Escherichia coli appartenant au pathovar AIEC pour «Adherent-Invasive Escherichia coli ». Ces souches sont capables d’adhérer et d’envahir les cellules épithéliales intestinales, et ont la capacité de survivre et de se multiplier en macrophages en induisant une synthèse intense de cytokines pro-inflammatoires. Les AIEC pourraient ainsi être impliquées dans l’induction et/ou l’entretien de l’état inflammatoire de la muqueuse intestinale.L’objectif de ce travail est d’identifier les déterminants bactériens des AIEC qui vont intervenir dans les étapes précoces de l’implantation des AIEC au niveau intestinal et de définir quel est le rôle des facteurs micro-environnementaux de l’hôte dans cette implantation.Nous montrons que l’AIEC LF82 possède une activité mucinolytique qui est portée par le gène vat-AIEC et qui favorise la traversée du mucus et la colonisation intestinale. Nous avons retrouvé ce gène chez 42% des souches AIEC isolées de patients atteints de MC, et chez 97% des souches AIEC appartenant au phylogroupe B2. Par ailleurs, nous avons montré que les sels biliaires augmentent l’expression de cette mucinase.Nous avons ensuite étudié l’influence des sels biliaires sur l’expression globale des gènes de la souche LF82. Les sels biliaires modifient profondément le métabolisme de la souche, induisant une diminution globale des voies de biosynthèse (protéines, lipides) et une augmentation des voies de dégradation (alcools, acides carboxyliques, polyamines, …). L’étude du catabolisme de l’éthanolamine et du propanediol indique que les AIEC pourraient se servir de ces substrats pour s’implanter au sein de la flore iléale. De plus, les analyses transcriptomiques révèlent que les sels biliaires augmentent l’expression de gènes codant des facteurs de virulence comme l’invasine IbeA, les systèmes de sécrétion de type VI et la yersiniabactine. Nous montrons également qu’ils favorisent la formation de biofilm chez les souches AIEC.Ces données indiquent que les sels biliaires constituent un signal permettant à la souche AIEC LF82 de mettre en place différentes voies métaboliques et déterminants bactériens nécessaires à son implantation au niveau intestinal.Mots-clé : Escherichia coli, maladie de Crohn, mucines, serine protéase, mucinase, AIEC, / The etiology of Crohn's disease (CD) involves disorders in host genetic factors and intestinal microbiota. Ileal mucosa of CD patients is often abnormally colonized by adherent-invasive Escherichia coli (AIEC). These strains isolated from the intestinal mucosa of CD patients are able to adhere to intestinal epithelial cells (IECs). This adhesion to IECs promotes the invasion of cells by the bacteria. Furthermore, the invasive ability of AIEC strains allows bacteria to translocate across the human intestinal epithelium, move into the deep tissues and activate immune cells continuously upon arrival. Thus AIEC could be involved in the inflammatory state of the intestinal mucous membrane. The aim of this study was to identify components of AIEC virulence, which might favor their implantation in the gut of CD patients and to define the role of several chemical factors from the ileal environment. Here, we reported a protease called Vat-AIEC from AIEC which favors the penetration of AIEC through the mucus layer and enhances gut colonization. The screening of E. coli strains isolated from CD patients revealed a preferential vat-AIEC association with AIEC strains belonging to the B2 phylogroup. Besides, Vat-AIEC transcription was increased with bile salts from the ileum environment. Then a global RNA sequencing (RNA-seq) of E. coli LF82 has been used to observe the impact of bile salts on the expression of bacterial genes. The results demonstrate the explosive effect of bile salts with a dysregulation of about 40% of the genome, with a global upregulation of genes involved in degradation and downregulation of those implicated in several biosynthesis. Our results show that LF82 use ethanolamine as a nitrogen source and propane diol as a carbon source, which can favor their colonization in the gut compared to the other bacteria. We also studied virulence genes expression in the presence of bile salts. They increase the expression of several virulence factors like the IbeA invasion, the type 6 secretion systems and the yersiniabactin. Furthermore, we noticed an increased expression of genes implicated in biofilm formation. These results improve the understanding of the global regulatory network in the presence of bile salts and thus of AIEC implantation in the human gut of CD patients.
|
54 |
Bioengineering the Expression of Active Recombinant Human Cathepsin G, Enteropeptidase, Neutrophil Elastase, and C-Reactive Protein in YeastSmith, Eliot T 01 August 2013 (has links)
The yeasts Pichia pastoris and Kluyveromyces lactis were used to express several recombinant human proteins for further biochemical characterization. Two substitution variants of recombinant human enteropeptidase light chain (rhEPL) were engineered to modify the extended substrate specificity of this serine protease. Both were secreted as active enzymes in excess of 1.7 mg/L in P. pastoris fermentation broth. The substitution variant rhEPL R96Q showed significantly reduced specificities for the preferred substrate sequences DDDDK and DDDDR; however, the rhEPL Y174R variant displayed improved specificities for these substrate sequences relative to all other reported variants of this enzyme. The neutrophil serine proteases human cathepsin G (hCatG) and human neutrophil elastase (HNE) were expressed in P. pastoris and HNE was also expressed in K. lactis. The recombinant variants rhCatG and rHNE, with intact C-terminal extensions, were expressed as fusion proteins with the soluble heme-binding domain of cytochrome B5 (CytB5) and an N-terminal hexahistidine (6xHis) tag for purification. The CytB5 domain was linked to the native N-termini of active rhCatG and rHNE by the EPLcleavable substrate sequence DDDDK~I, where ~ is the sessile bond. These fusion proteins were directed for secretion. The yeast P. pastoris expressed up to 3.5 mg/L of EPL-activable rHNE in fermentation broth; however, only 200 μg/L of rhCatG could be produced by this method. Recombinant expression in K. lactis never surpassed 100 μg/L of activable rHNE. The CytB5 fusion domain was present in the heme-bound form, conferring a red color and 410 nm absorbance peak to solutions containing the fusion proteins. This absorbance pattern was most readily visible during the purification of CytB5-rHNE from P. pastoris. Human C-reactive protein (hCRP) and the substitution variant CRP E42Q were expressed in recombinant form and secreted by P. pastoris. Both products were found to bind phosphocholine (PCh) in the same manner as native hCRP. Difficulties encountered during purification revealed that wild type recombinant CRP (rCRP) was produced at 2 different molecular masses. The P. pastoris recombinant expression system yielded better results than K. lactis. Bioreactor-scale fermentation in a 5 L vessel facilitated expression and characterization of these recombinant proteins.
|
55 |
Caractérisation de IrSPI, un inhibiteur de sérine protéase impliqué dans la prise du repas sanguin et l’infection bactérienne des tiques Ixodes ricinus. / Characterization of IrSPI, a serine protease inhibitor implicated both in tick feeding and tick bacterial infection of Ixodes ricinus.Blisnick, Adrien 21 February 2019 (has links)
Ixodes ricinus est l’espèce de tique la plus abondante et ayant la plus vaste répartition géographique en Europe. Elle est le vecteur de nombreux agents pathogènes d’importance en santé publique et vétérinaire. Le remplacement des acaricides générant pollution environnementale et apparition croissante de résistances requiert le développement urgent de nouvelles stratégies de lutte efficaces contre les tiques et les agents pathogènes qu’elles transmettent. La découverte de telles stratégies passe nécessairement par une meilleure connaissance des interactions entre les tiques, leurs hôtes et les agents pathogènes transmis. La salive de tique, à l’interface de ces interactions, est un fluide essentiel pour ces arthropodes et possède notamment des propriétés protéolytiques, anticoagulantes, immunomodulatrices, analgésique, et anti-inflammatoires qui permettent à la tique de réaliser ses repas sanguins extrêmement longs. Afin de comprendre les mécanismes moléculaires impliqués dans la transmission des agents pathogènes et pour identifier de possibles candidats vaccinaux contre I. ricinus, une étude transcriptomique comparative entre des glandes salivaires infectées et non infectées par la bactérie Bartonella henselae a été antérieurement réalisée. Le transcrit le plus surexprimé suite à cette infection était IrSPI, un inhibiteur de sérine protéase de la famille des Kunitz. Les analyses fonctionnelles par ARN interférence ont montré l’implication de ce gène dans le gorgement et de l’infection des glandes salivaires par B. henselae. Ainsi, les travaux de thèse présentés ici ont concerné l’analyse structurelle, biochimique et fonctionnelle de IrSPI en tant que molécule impliquée dans les interactions tick-hôte-pathogène. Le premier objectif était de définir la structure et la séquence du gène IrSPI mais, malheureusement, bien que nos résultats aient permit des avancés sur cette question, nous n'avons pu obtenir la totalité de sa séquence. Dans un second temps, la dynamique d’expression d’IrSPI a été évaluée au cours du gorgement et de l’infection des tiques par différents agents pathogènes, montrant que son expression est induite par le repas sanguin, par des agents transmis par la tique mais pas par Escherichia coli, bactérie non transmise. De plus, nos résultats ont montré l’expression de IrSPI dans plusieurs organes de la tique, suggérant son implication dans diverses fonctions au sein de ce vecteur. Parmi elles, la mise en évidence d'une injection, par la salive, de la protéine à l'hôte vertébré nous a permis d'envisager un rôle sur les réponses de l'hôte à la piqûre de tique. Nos résultats n’ont montré aucune implication dans la voie extrinsèque de la coagulation ni dans la fibrinolyse, ni dans l’angiogenèse. En revanche, ils ont démontré que IrSPI inhibe la prolifération des lymphocytes TCD4+ sous stimulation monogénique quand chez des lymphocytes B non stimulés IRSPI, il induit une hausse de la prolifération. De plus IrSPI a montré une action négative significative sur la production de la majorité des cytokines et chimiokines pro-inflammatoires produites par les macrophages et les splénocytes. Ainsi, IrSPI, correspond à un des composants salivaires d’I. ricinus lui permettant de moduler la réponse immune de l’hôte pour lui permettre de prélever son repas sanguin tout en favorisant la transmission des agents pathogènes. Enfin, des résultats préliminaires dans l'identification des interactants de IrSPI à la fois chez la tique et l’hôte vertébré ouvre de nombreuses voies de recherche quant à la compréhension de ses fonctions. / Ixodes ricinus tick species, the most abundant and widespread tick in Europe, is an important vector of pathogens affecting both animal and human health. To replace the use of acaricides that generate environmental contamination and resistances, new environmentally sustainable approaches providing broad protection against ticks and tick-borne pathogens (TBP) are urgently needed. Such development requires improved understanding of the biology of ticks and more particularly of their interactions with vertebrate hosts and TBP. Tick saliva is an essential biofluid for ticks, as its proteolytic, anticoagulant, immunomodulatory, analgesic and anti-inflammatory activities allow ticks to acquire their blood meal under optimal conditions. Moreover, injection of saliva during blood feeding represents the principal route by which TBP are transmitted to the host. To understand the molecular mechanisms involved in TBP transmission, as well as to identify putative vaccine candidates against I. ricinus, salivary glands from bacteria infected and uninfected ticks were previously compared by high throughput transcriptomics. The most up-regulated transcript following infection was IrSPI, which belongs to the Kunitz/BPTI inhibitor family. Functional analyses via RNAi knockdown experiments revealed that IrSPI enhances both blood feeding and bacterial burden in the salivary glands. This present PhD work concerns then the structural, biochemical and functional characterization of IrSPI as a molecule involved in tick-host-pathogen interactions. Our aim was first to define the structure of IrSPI gene but, unfortunately, while our results have led to progress on this issue, we have not been able to get the full sequence. Then, the dynamic of IrSPI expression was evaluated during both tick feeding and colonization of ticks by pathogens, showing that its expression is induced by blood feeding and TBP but not by Escherichia coli that is not transmitted by I. ricinus. In addition, our results shown the expression of IrSPI in several tick organs, suggesting its implication in several functions in tick physiology. Among them, the discovery of the injection of IrSPI, through the saliva, to the vertebrate host allowed us to consider a role in host responses to tick bite. Evaluation of IrSPI effect on host showed no impact on coagulation through extrinsic pathway, as determined by analysis of thrombin generation time and by fibrinolysis, or in angiogenesis. However, it inhibited the proliferation of mitogen-stimulated CD4+ lymphocytes and increased unstimulated-B cell proliferation. In addition, IrSPI also modulated cytokine production from macrophages and splenocytes, repressing significantly most of proinflammatory cytokines and chemokines. Thus, we demonstrated that IrSPI plays a role in modulating the host immune response during blood feeding. Finally, preliminary results in the identification of the protein’s interactants open many research perspectives for understanding how IrSPI acts in tick physiology and counteracts host responses to tick injury and pathogen transmission.
|
56 |
The secreted serine protease xHtrA1 is a positive feedback regulator of long-range FGF signaling. / Die sezernierte Serin-Protease xHtrA1 ist ein positiver Rückkoppelungsfaktor von weitreichenden FGF-SignalenHou, Shirui 04 September 2007 (has links)
No description available.
|
57 |
Kallikrein-related peptidase 4 activation of protease-activated receptor family members and association with prostate cancerRamsay, Andrew John January 2008 (has links)
Two areas of particular importance in prostate cancer progression are primary tumour development and metastasis. These processes involve a number of physiological events, the mediators of which are still being discovered and characterised. Serine proteases have been shown to play a major role in cancer invasion and metastasis. The recently discovered phenomenon of their activation of a receptor family known as the protease activated receptors (PARs) has extended their physiological role to that of signaling molecule. Several serine proteases are expressed by malignant prostate cancer cells, including members of the kallikreinrelated peptidase (KLK) serine protease family, and increasingly these are being shown to be associated with prostate cancer progression. KLK4 is highly expressed in the prostate and expression levels increase during prostate cancer progression. Critically, recent studies have implicated KLK4 in processes associated with cancer. For example, the ectopic over-expression of KLK4 in prostate cancer cell lines results in an increased ability of these cells to form colonies, proliferate and migrate. In addition, it has been demonstrated that KLK4 is a potential mediator of cellular interactions between prostate cancer cells and osteoblasts (bone forming cells). The ability of KLK4 to influence cellular behaviour is believed to be through the selective cleavage of specific substrates. Identification of relevant in vivo substrates of KLK4 is critical to understanding the pathophysiological roles of this enzyme. Significantly, recent reports have demonstrated that several members of the KLK family are able to activate PARs. The PARs are relatively new members of the seven transmembrane domain containing G protein coupled receptor (GPCR) family. PARs are activated through proteolytic cleavage of their N-terminus by serine proteases, the resulting nascent N-terminal binds intramolecularly to initiate receptor activation. PARs are involved in a number of patho-physiological processes, including vascular repair and inflammation, and a growing body of evidence suggests roles in cancer. While expression of PAR family members has been documented in several types of cancers, including prostate, the role of these GPCRs in prostate cancer development and progression is yet to be examined. Interestingly, several studies have suggested potential roles in cellular invasion through the induction of cytoskeletal reorganisation and expression of basement membrane-degrading enzymes. Accordingly, this program of research focussed on the activation of the PARs by the prostate cancer associated enzyme KLK4, cellular processing of activated PARs and the expression pattern of receptor and agonist in prostate cancer. For these studies KLK4 was purified from the conditioned media of stably transfected Sf9 insect cells expressing a construct containing the complete human KLK4 coding sequence in frame with a V5 epitope and poly-histidine encoding sequences. The first aspect of this study was the further characterisation of this recombinant zymogen form of KLK4. The recombinant KLK4 zymogen was demonstrated to be activatable by the metalloendopeptidase thermolysin and amino terminal sequencing indicated that thermolysin activated KLK4 had the predicted N-terminus of mature active KLK4 (31IINED). Critically, removal of the pro-region successfully generated a catalytically active enzyme, with comparable activity to a previously published recombinant KLK4 produced from S2 insect cells. The second aspect of this study was the activation of the PARs by KLK4 and the initiation of signal transduction. This study demonstrated that KLK4 can activate PAR-1 and PAR-2 to mobilise intracellular Ca2+, but failed to activate PAR-4. Further, KLK4 activated PAR-1 and PAR-2 over distinct concentration ranges, with KLK4 activation and mobilisation of Ca2+ demonstrating higher efficacy through PAR-2. Thus, the remainder of this study focussed on PAR-2. KLK4 was demonstrated to directly cleave a synthetic peptide that mimicked the PAR-2 Nterminal activation sequence. Further, KLK4 mediated Ca2+ mobilisation through PAR-2 was accompanied by the initiation of the extra-cellular regulated kinase (ERK) cascade. The specificity of intracellular signaling mediated through PAR-2 by KLK4 activation was demonstrated by siRNA mediated protein depletion, with a reduction in PAR-2 protein levels correlating to a reduction in KLK4 mediated Ca2+mobilisation and ERK phosphorylation. The third aspect of this study examined cellular processing of KLK4 activated PAR- 2 in a prostate cancer cell line. PAR-2 was demonstrated to be expressed by five prostate derived cell lines including the prostate cancer cell line PC-3. It was also demonstrated by flow cytometry and confocal microscopy analyses that activation of PC-3 cell surface PAR-2 by KLK4 leads to internalisation of this receptor in a time dependent manner. Critically, in vivo relevance of the interaction between KLK4 and PAR-2 was established by the observation of the co-expression of receptor and agonist in primary prostate cancer and prostate cancer bone lesion samples by immunohistochemical analysis. Based on the results of this study a number of exciting future studies have been proposed, including, delineating differences in KLK4 cellular signaling via PAR-1 and PAR-2 and the role of PAR-1 and PAR-2 activation by KLK4 in prostate cancer cells and bone cells in prostate cancer progression.
|
58 |
Planejamento e síntese de peptideomiméticos como candidatos a inibidores de calicreínas teciduais humanas 5 e 7Azevedo, Pedro Henrique Rodrigues de Alencar 12 March 2018 (has links)
Submitted by Biblioteca da Faculdade de Farmácia (bff@ndc.uff.br) on 2018-03-12T17:36:57Z
No. of bitstreams: 1
PEDRO HENRIQUE RODRIGUES DE ALENCAR AZEVEDO.pdf: 15048741 bytes, checksum: a121d29e5dc4898c7b8e4a85def01e12 (MD5) / Made available in DSpace on 2018-03-12T17:36:57Z (GMT). No. of bitstreams: 1
PEDRO HENRIQUE RODRIGUES DE ALENCAR AZEVEDO.pdf: 15048741 bytes, checksum: a121d29e5dc4898c7b8e4a85def01e12 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / As calicreínas teciduais humanas (KLKs) compreendem uma família de 15 enzimas serina proteases (KLKs 1-15) amplamente encontradas nos tecidos humanos. Em diversas patologias como a dermatite atópica, psoríase, síndrome de Netherton, câncer de ovário, mama e testículos, as KLKs encontram-se em concentrações elevadas. Por exemplo, as KLKs 5 e 7 estão mais abundantemente expressadas na pele, na qual estão envolvidas com o processo de descamação da mesma, e também presentes em alguns tipos de carcinomas. Dessa forma, as KLKs 5 e 7 são consideradas importantes alvos terapêuticos para o tratamento de doenças onde elas encontram-se superexpressadas, enfatizando a existência de somente um fármaco comercialmente disponível como inibidor de KLK.
Nesse contexto, o trabalho descreve a síntese de 3 séries de compostos peptideomiméticos, incorporando o cerne estatina e diferentes resíduos de aminoácidos, planejados como candidatos a inibidores das enzimas serina proteases do KLKs 5 e 7. Os compostos finais foram obtidos utilizando uma rota sintética eficiente tendo como reação-chave a formação da ligação peptídica entre o cerne estatina e cloridratos de aminoésteres, previamente sintetizados. Os compostos sintetizados foram identificados por técnicas de Ressonância Magnética Nuclear, Infravermelho e Espectrometria de massas de alta resolução e os produtos finais serão avaliados em testes in vitro de inibição das enzimas KLKs / Human tissue kallikreins (KLKs) comprise a family of 15 serine protease enzymes (KLKs 1-15) widely found in human tissues. In several pathologies such as atopic dermatitis, psoriasis, Netherton syndrome, ovarian, breast and testis cancer, KLKs are in high concentrations. For example, KLKs 5 and 7 are more abundantly expressed in the skin, in which they are involved in the desquamation process, and also present in some types of carcinomas. Thus, KLKs 5 and 7 are considered important therapeutic targets for the treatment of diseases where they are over expressed, emphasizing the existence of only one commercially available drug as a KLK inhibitor.
In this context, the work describes the synthesis of three series of peptideomimetic compounds incorporating the statin core and different amino acid residues, designed as candidates for inhibitors of the serine protease enzymes of KLKs 5 and 7. The final compounds were obtained using an efficient synthetic route based on the reaction of formation of the peptide bond between the statin core and previously synthesized amino acid hydrochlorides. The synthesized compounds were identified by Nuclear Magnetic Resonance, Infrared and High Resolution Mass Spectrometry techniques and the final products will be evaluated in in vitro inhibition assays of the KLKs enzymes
|
59 |
Studies On Structure And Evolution Of Serine Protease Inhibitors With Special Reference To Bowman-Birk InhibitorsPrakash, Balaji 12 1900 (has links) (PDF)
No description available.
|
60 |
Insights Into The Mechanism Of Polyprotein Processing Of Sesbania Mosaic Virus And Characterization Of The Polyprotein DomainsNair, Smita 10 1900 (has links) (PDF)
1. Viruses are obligate parasites that hijack the host cell machinery to synthesize
their own gene products and for their propagation. In order to establish a
successful viral infection, viruses have evolved different strategies to evade
host check points. Further more, their success also relies in employing varied
strategies to express maximum number of functional proteins from their small
constrained genome. Polyprotein processing is a widely used strategy of
expression by many plant viruses. With limited information available on this
aspect for sobemoviruses, the present study was undertaken.
2. The present thesis deals with the mechanism of Sesbania mosaic virus (SeMV) polyprotein processing and functional characterization of the polyprotein domains. SeMV infects Sesbania grandiflora that belongs to the Fabaceae family. It is a positive sense ssRNA virus with a genome length of 4149 nucleotides. The genome encodes four potential overlapping open
reading frames (ORFs). ORF1 codes for an 18 kDa protein that is proposed to
be involved in the movement of the virus. ORF 3 codes for the coat protein (CP) that encapsidates the viral genomic RNA to form the viral particles. The central ORF codes for polyprotein that has a serine protease domain at its Nterminus that cleaves the polyprotein at specific E-T/S sites to release the functional domains. So far only in SeMV, the E. coli expressed polyprotein,
Protease-VPg-RdRp was shown to undergo processing at E325-T326, E402-T403 and E498-S499 releasing protease, VPg, P10 and RdRp domains respectively.
3. Based on the arrangement of the central ORF, the genome organization of SeMV was earlier shown to be like that of SCPMV type. However, recent sequencing data from the laboratory showed that the organization of SeMV gRNA was like that of CfMV type. This would imply that in SeMV the central two ORFs will be translated to give two polyproteins, 2a (Protease-VPg-C-terminal domain) and 2ab (Protease-VPg-RdRp) the C-terminus of 2a and N-terminus of RdRp being different from what was reported previously. Therefore, in the light of the new genome organization for SeMV, the
mechanism of processing of polyprotein 2a and 2ab needs to be revisited.
4. SeMV protease domain was shown to require natively unfolded VPg at its Cterminus for its activity. Aromatic stacking interactions between protease and VPg (via W43 residue) were shown to confer the activity to the protease. However, the residues in the protease domain involved in these interactions have not been identified.
5. The objectives of the present studies are
• To elucidate the mechanism of processing of polyproteins 2a and 2ab in E. coli and in planta.
• To identify residues in the protease domain involved in mediating aromatic
stacking interactions with VPg.
• To functionally characterize the C-terminal domain of polyprotein 2a.
6. Polyprotein 2a when expressed in E. coli, from the new cDNA clone, got
cleaved at the earlier identified sites E325-T326, E402-T403 and E498-S499 to release protease, VPg, P10 and P8 respectively. The specificities of the
cleavage sites were established by mutational analysis.
7. Additionally, a novel cleavage was identified within the protease domain at
position E132-S133. The polyprotein 2a that was mutated for this site (ΔN70
2a-E132A) showed no release of P8 protein though the polyprotein was intact for E498-S499 site. Unlike other cleavage site mutants, ΔN70 2a-E132A mutant also revealed large accumulation of intact polyprotein, again implying that the mutation not only abolished the proteolytic cleavage at that site but hampered the processing at other sites. The results confirmed that the
cleavage at N-terminus of the protease/polyprotein is crucial for an efficient processing in particular for the cleavage between P10-P8.
8. Interestingly, though the sites in polyprotein 2ab are exactly the same as
identified in polyprotein 2a, the former got cleaved between Protease-VPg but not between VPg-RdRp. This cleavage site appeared to be rather masked in polyprotein 2ab. Also, the cleavage at E132-S133 site appeared to be rather slow. These results indicate to a differential cleavage pattern, governed
probably by the conformation of 2ab. In other words, the local context of the
cleavage site and just not the sequence per se could be playing a key role in
2ab polyprotein processing.
9. Products, corresponding to all cleavages identified in E. coli (E132-S133,
E325-T326, E402-T403 and E498-S499) were also detected in infected Sesbania leaves. Products corresponding to the sizes of ΔN132 Protease and ΔN132 Protease-VPg were detected suggesting that the removal of the
membrane anchoring domain from the protease does occur in planta. Also, detection of band corresponding P8, confirmed that the cleavage between P10-P8 indeed occured in planta too.
10. The trans cleavage experiments suggested that not all of the four cleavages in
polyprotein 2a occur in trans (intermolecular). Cleavages at E132-S133 and
E498-S499 do not occur in trans impling that cleavages at these sites could only occur in cis (intramolecular) by auto-proteolysis of the polyprotein.
11. The Thr at P1’ did not make a site trans cleavable. Interestingly, SeMV protease was found to cleave even an E-S site in trans but only when present at positions 324-325 and 402-403, suggesting that trans cleavage in SeMV is governed by the context rather than the Thr at P1’position of the cleavage site. The E498-S499 site was found to be highly stringent not only for the mode of
its cleavage (cis cleavage) but also for its sequence (E-S only). A Thr substitution for Ser at this site, made it non cleavable in cis.
12. The results reveal that the polyprotein processing in SeMV is regulated by a number of strategies, viz. a) availability of the cleavage site depending on the conformation of the flanking domains (E132-S133 and E402-T403 cleavages in 2ab). b) Mode of recognition (cis or trans). c) Context/position of the cleavage site.
13. Based on the sequences of all four cleavage sites identified, a consensus has
been drawn for SeMV serine protease cleavage site, i.e., N/Q-E-T/S-X (where X is an aliphatic residue) at P2-P1-P1’-P2’ position respectively.
14. With a view to understand the structural reasons for such high specificity, the
residues in the S1 and S2 binding pocket, that recognize the substrate P1 and P2 residues respectively, were identified based on the structural comparison of SeMV protease with other Glu/Gln specific proteases. Mutational analysis of these residues clearly demonstrated that H298, T279 and N308 of the S1-binding pocket that would bind the substrate glutamate are crucial for the protease activity. R309 that forms the S2 binding pocket is also crucial for protease activity.
15. Also, the P2 (Asn/Gln) residue recognized by R309 plays an important role in
determining the substrate specificity. A positively charged residue Lys was not tolerated at this position. SeMV protease was also shown to efficiently cleave the peptide bond C-terminus to an uncharged Gln in vivo suggesting that it is a Glu/Gln specific protease.
16. An interesting feature of the SeMV protease domain is the presence of a disulphide bond that holds the S1-binding pocket. However, unlike for the cellular counterparts like trypsin, the disulphide was found to be not essential for either the SeMV protease activity or structural stability.
17. Protease and VPg domains were proposed to be involved in aromatic interactions that conferred activity to the protease. The structure of protease revealed a stack of aromatic residues (W271, F269. Y315 and Y319) exposed to the solvent. Mutational analysis was performed to identify their role in mediating the interactions and hence the activity of protease. H275, though
not a part of exposed aromatic stack in the protease, was chosen for mutational analysis as it lies close to the W271 in sequence and is conserved in the protease domain across all the known sobemoviruses. The in vivo and
trans cleavage assays suggested that residues W271 and H275 but not Y315 or Y319 are crucial for protease activity.
18. The Far-UV CD spectrum of protease-VPg is characterized by a positive peak
at 230 nm, signifying the aromatic interactions. Far-UV CD spectral analysis
of the aromatic mutants showed that W271 and H275, but not F269 and Y319 are the major contributors of the 230 nm positive peak, confirming the direct involvement of these residues in the stacking interactions with W43 of VPg. Thermal stability studies, fluorescence spectroscopy and 1D-NMR
spectroscopy studies also confirmed the histidine aromatic interactions between W271, H275 of protease with W43 of VPg.
19. The loss in aromatic interactions in the mutants caused Protease-VPg to aggregate, suggesting that the aromatic interactions between protease and VPg not only conferred activity to the protease but also the active oligomeric status.
20. In silico analysis of the C-terminal domain showed that it has no significant
similarities with any known functional proteins. The region corresponding to P8 was amplified and cloned in pRSET C vector, over-expressed and purified.
21. The purified His-tagged P8 showed mass abnormality on the SDS-PAGE. However, the mass spectrometric analysis of the purified protein showed that it had a molecular mass of 9.766 kDa as is expected for a His-tagged P8. P8 is highly basic, which could possibly explain its anomalous behaviour on the
SDS-PAGE. The purified recombinant P8 protein was found to be natively unfolded. In vitro binding studies revealed that P8 had nucleic acid binding property. The protein was also found to be phosphorylated both in vitro and in vivo conditions.
22. Interestingly, P18, (a precursor of P8) but not P8, was found to possess an inherent ATP hydrolyzing property. Optimum conditions for the ATPase assay were found to be Tris HCl pH 8.0, 37 ºC, 5 mM MgCl2. The activity
was linear upto 20 mins. P18 could utilize all NTPs and dNTPs. Studies revealed that ATPase activity resided in the P10 domain of P18, though P8 region could enhance the activity. Conclusively, the results demonstrate that the C-terminal domains of polyprotein 2a have ATPase and nucleic acid
binding activity and could therefore have possible roles in movement and replication.
|
Page generated in 0.0789 seconds