• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electronic and structural dynamics of vanadates and nickelates: effect of temperature, strain and photoexcitation

Abreu, Elsa 22 January 2016 (has links)
The scientific relevance and potential for technological applications of complex materials have made them the focus of active investigation in order to fully charac- terize the competition and interactions between their electronic, structural, orbital, and spin degrees of freedom. Optical and terahertz (THz) spectroscopy provide ac- cess to electronic and low frequency quasiparticle responses, and therefore play a key role in understanding the fundamental mechanisms which dictate the macroscopic properties of complex materials. Time-resolved experiments, in turn, have the po- tential to disentangle the various coexisting energy scales through a careful selection of the pump and probe characteristics. This work investigates the role played by the electronic, structural and magnetic excitations in the insulator-to-metal transi- tions (IMT) of VO2, V2O3 and NdNiO3, through studies under different conditions of temperature, strain, doping and photoexcitation. Our work shows that a complete understanding of the IMT in VO2 requires sev- eral length scales and time scales to be considered. Indeed, epitaxial strain leads to anisotropy in the IMT characteristics of thin films of (100) and (110) VO2/TiO2, measured using THz spectroscopy, which can be explained by strain induced modi- fications both in the (microscopic) V3d orbitals and in the geometry of mesoscopic metallic domains. On the other hand, ultrafast studies which track, with femtosecond resolution, the electronic and structural dynamics of VO2 thin films following THz excitation reveal a delay in the onset of the structural response with respect to the electronic one, lending support to the correlation rather than Peierls driven picture of the IMT in this material. As for V2O3, the IMT is seen to occur via nucleation and growth of metallic domains, as previously reported in VO2. However, a scaling of the photoinduced conductivity dynamics rise time is further identified, which reveals the temperature and fluence dependence of the nucleation and growth process. Finally, strained NdNiO3 films exhibit a two step dynamical conductivity response following optical excitation, different from that of the vanadates with which they share a complex, albeit more tunable, phase diagram. This hints at a significant role being played by the magnetic structure during the IMT in NdNiO3.
2

Investigation of Titanium Sesquioxide Ti2O3: Synthesis and Physical Properties

Li, Yangyang 08 November 2016 (has links)
Titanium is one of the earth-abundant elements, and its oxides including titanium dioxide (TiO2) and strontium titanium oxide (SrTiO3) are widely used in technologies of electronics, energy conversion, catalysis, sensing, and so on. Generally, the Ti ions in these compounds have a valence of 4+ with the outer shell electron configuration of 3d0. In this thesis, we explore interface and titanite containing Ti3+ ions with 3d1 itinerate electrons, which we believe open new doors towards some new titanite-based technologies. In the first part of this thesis (Chapter 3), we will discuss the nanoscale chemical and valence evolution at a metal/oxide interface: Ti/SrTiO3. In many devices, metal-oxide interfaces are ubiquitous and play important roles in the performance of a wide range of electronic and optoelectronic devices. This motivated us to examine the microscopic structure of the interfaces between strontium titanium oxide and metals. In this work, one unit cell of cubic perovskite Ti2O3 was observed at the Ti/SrTiO3 interface, and oxygen diffusion depth of ~3.2 nm was observed in the sample fabricated at room temperature. Meanwhile, oxygen vacancy domains in the SrTiO3 substrates was observed and characterized by low angle annular dark field (LAADF) imaging and electron energy loss spectra (EELS). In the main part of this thesis, we will focus on the structure and physical properties of Ti2O3, a titanite which has received less attention so far in the research community. Different from TiO2 and SrTiO3, Ti2O3 has a much narrower band-gap (~0.1 eV), and we will discuss some preliminary results of its physical properties and potential applications. In Chapter 4, we will discuss the photothermal application and mid-infrared photodetectors using Ti2O3 nanoparticles based on its ultra-narrow bandgap. Photo-thermal effect via a Ti2O3/membrane structure is further applied to seawater desalination. A high temperature of 70 °C was achieved when this Ti2O3/membrane double layer structure floating on top surface of water subjected to the white light illumination of 7 kW/cm2. Furthermore, room temperature mid-infrared (10 μm) photodetectors based on Ti2O3/graphene hybrid structure was fabricated and studied. The photoresponsivity of this hybrid device, operated from 4.5 to 10 μm, is above ~ 100 A/W, which, to our knowledge, is the highest value for the mid-infrared photodetectors operating in the photocurrent (PC) mode. In chapter 5, structure, optical, transport properties of Ti2O3 epitaxial thin films on sapphire fabricated by pulsed laser deposition (PLD) will be discussed. By tailoring growth conditions, two different: trigonal and orthorhombic, of Ti2O3 were stabilized on Al2O3 substrates. More interestingly, the orthorhombic Ti2O3 has never been reported, and, moreover, superconductivity (~8 K) and high temperature ferromagnetism (up to 700 K) was discovered in this new stabilized phase. More details of the physical properties of Ti2O3 will be discussed in the following chapters of this dissertation.
3

New Yb 3+ -doped laser materials and their application in continuous-wave and mode-locked lasers

Klopp, Peter 13 October 2006 (has links)
Yb3+-Lasermedien glänzen mit hoher Effizienz und relativ geringer thermischer Last, besonders in Laseroszillatoren und -verstärkern mittlerer bis hoher Leistung. Modenkopplung von Yb3+-Lasersystemen ermöglicht Subpikosekunden-Pulse bei hoher mittlerer Ausgangsleistung. Diese Arbeit widmet sich zwei Gruppen der vielversprechendsten neuen Yb3+-aktivierten Laserkristalle: den strukturell analogen, monoklinen Doppelwolframaten Yb:KGd(WO4)2 (Yb:KGW), Yb:KY(WO4)2 (Yb:KYW) und KYb(WO4)2 (KYbW) und den Yb3+-dotierten Sesquioxiden, vertreten durch Yb:Sc2O3 (Yb:Skandia). Die spektroskopischen Daten von KYbW, darunter eine extrem kurze 1/e-Absorptionslänge von 13 Mikrometern bei 981 nm, wurden im Rahmen der Dissertation vermessen. Die Lasereigenschaften niedrig Yb3+-dotierter Wolframate im Dauerstrich (cw)- und modengekoppelten Betrieb wurden in Lasern moderater Ausgangsleistung untersucht. Ultrakurzpuls-Erzeugung mit Yb:KYW, Yb:KGW und Yb:Glas wurde in einem passiv modengekoppelten Laser verglichen. Dabei wurde eine relativ hohe Lasereffizienz erreicht, Dank einer Trapezlaserdiode als Pumpquelle mit exzellenter Strahlqualität. Quasi-cw- und cw-Laserbetrieb von Yb3+ in hochdotierten und stöchiometrischen Wolframatkristallen wurden untersucht. Diese Materialien sind interessant für Mikrochip- und Scheibenlaser. Wichtige Fragestellungen waren die Kristallqualität und die Hitzeentwicklung bei hohen Yb3+-Konzentrationen. Erstmals wurde Lasertätigkeit von Wolframaten mit Yb3+-Konzentrationen >>20% und schließlich, mit KYbW, cw-Laserbetrieb eines stöchiometrischen Yb-Lasermaterials demonstriert. Weiterhin wurde mit KYbW der kleinste bisher für einen Laserkristall gemessene Laserquantendefekt erzielt, 1,6%. Unter Benutzung eines Yb:Sc2O3-Lasermediums wurde erstmals modengekoppelter Betrieb eines Oszillators mit Sequioxid-Laserkristall gezeigt. Betrieb mit nichtsolitonen- und solitonenartiger Pulsformung sowie mit Ti:Saphir-Laser oder Trapezlaserdiode als Pumplaser wurden untersucht. Mit einem Ti:Saphir-gepumpten Yb:Skandia-Laser wurde eine Konversionseffizienz von 47 % bezogen auf die absorbierte Pumpleistung erreicht, der bisher höchste Wert für einen modengekoppelten Yb3+-basierten Laser. / Yb3+ laser media excel with high efficiency and relatively low heat load, especially in medium to high power laser oscillators and amplifiers. Mode-locking of Yb3+ laser systems can provide subpicosecond pulse durations at high average power. This work deals with two groups of the most promising novel Yb3+-activated laser crystals: Yb3+-activated monoclinic double tungstates, namely the isostructural crystals Yb:KGd(WO4)2 (Yb:KGW), Yb:KY(WO4)2 (Yb:KYW), and KYb(WO4)2 (KYbW), and Yb3+-doped sesquioxides, represented by Yb:Sc2O3 (Yb:scandia). Spectroscopic data of KYbW were investigated as part of this thesis, finding an extremely short 1/e-absorption length of 13 micrometers at 981 nm. Continuous-wave (cw) and mode-locked laser performance of moderate-average-power lasers based on lowly Yb3+-doped tungstates were examined. Ultrashort pulse generation with Yb:KYW, Yb:KGW, and Yb:glass was compared in a passively mode-locked laser. A relatively high mode-locked laser efficiency was achieved due to a tapered diode pump laser with excellent beam quality. Quasi-cw and cw lasing of Yb3+ in highly doped and stoichiometric tungstate crystals were investigated. These materials are interesting for microchip and thin-disk lasers. Important issues were crystal quality and heat generation at high Yb3+ concentrations. For the first time, laser operation of tungstates with a Yb3+ concentration >>20% and finally, with KYbW, cw lasing of a stoichiometric Yb laser material was achieved. Furthermore, with KYbW, the smallest laser quantum defect ever for a laser crystal was demonstrated, 1.6%. Using a Yb:Sc2O3 laser medium, for the first time mode locking of an oscillator using a sesquioxide laser crystal was realized. Laser regimes with non-solitonlike and solitonlike pulse shaping were investigated, using a Ti:Sapphire laser and a tapered laser diode as pump sources. With a Ti:Sapphire-laser-pumped Yb:scandia laser the highest conversion efficiency with respect to absorbed pump power for any mode-locked Yb3+-based laser was achieved, 47%.
4

Hypsometrischer Klima- und Bodenwandel in Bergregenwaldökosystemen Boliviens / Altitudinal change of climate and soils in Bolivian tropical montane rainforest ecosystems

Schawe, Marcus 06 July 2005 (has links)
No description available.

Page generated in 0.034 seconds