1 |
Continuum Sensitivity Analysis using Boundary Velocity Formulation for Shape DerivativesKulkarni, Mandar D. 28 September 2016 (has links)
The method of Continuum Sensitivity Analysis (CSA) with Spatial Gradient Reconstruction (SGR) is presented for calculating the sensitivity of fluid, structural, and coupled fluid-structure (aeroelastic) response with respect to shape design parameters. One of the novelties of this work is the derivation of local CSA with SGR for obtaining flow derivatives using finite volume formulation and its nonintrusive implementation (i.e. without accessing the analysis source code). Examples of a NACA0012 airfoil and a lid-driven cavity highlight the effect of the accuracy of the sensitivity boundary conditions on the flow derivatives. It is shown that the spatial gradients of flow velocities, calculated using SGR, contribute significantly to the sensitivity transpiration boundary condition and affect the accuracy of flow derivatives. The effect of using an inconsistent flow solution and Jacobian matrix during the nonintrusive sensitivity analysis is also studied.
Another novel contribution is derivation of a hybrid adjoint formulation of CSA, which enables efficient calculation of design derivatives of a few performance functions with respect to many design variables. This method is demonstrated with applications to 1-D, 2-D and 3-D structural problems. The hybrid adjoint CSA method computes the same values for shape derivatives as direct CSA. Therefore accuracy and convergence properties are the same as for the direct local CSA.
Finally, we demonstrate implementation of CSA for computing aeroelastic response shape derivatives. We derive the sensitivity equations for the structural and fluid systems, identify the sources of the coupling between the structural and fluid derivatives, and implement CSA nonintrusively to obtain the aeroelastic response derivatives. Particularly for the example of a flexible airfoil, the interface that separates the fluid and structural domains is chosen to be flexible. This leads to coupling terms in the sensitivity analysis which are highlighted. The integration of the geometric sensitivity with the aeroelastic response for obtaining shape derivatives using CSA is demonstrated. / Ph. D. / Many natural and man-made systems exhibit behavior which is a combination of the structural elastic response, such as bending or twisting, and aerodynamic or fluid response, such as pressure; for example, flow of blood in arteries, flapping of a bird’s wings, fluttering of a flag, and flight of a hot-air balloon. Such a coupled fluid-structure response is defined as aeroelastic response. Flight of an aircraft through turbulent weather is another example of an aeroelastic response. In this work, a novel method is proposed for calculating the sensitivity of an aircraft’s aeroelastic response to changes in the shape of the aircraft. These sensitivities are numbers that indicate how sensitive the aircraft’s responses are to changes in the shape of the aircraft. Such sensitivities are essential for aircraft design.
The method presented in this work is called Continuum Sensitivity Analysis (CSA). The main goal is to accurately and efficiently calculate the sensitivities which are used by optimization tools to compute the best aircraft shape that suits the customers needs. The key advantages of CSA, as compared to the other methods, are that it is more efficient and it can be used effectively with commercially available (nonintrusive) tools. A unique contribution is that the proposed method can be used to calculate sensitivities with respect to a few or many shape design variables, without much effort.
Integration of structural and fluid sensitivities is carried out first by applying CSA individually for structural and fluid systems, followed by connecting these together to obtain the coupled aeroelastic sensitivity. We present the first application of local formulation of CSA for nonintrusive implementation of high-fidelity aeroelastic sensitivities. The following challenging tasks are tackled in this research: (a) deriving the sensitivity equations and boundary conditions, (b) developing and linking computer codes written in different languages (C++, MATLAB, FORTRAN) for solving these equations, and (c) implementing CSA using commercially available tools such as NASTRAN, FLUENT, and SU2. CSA can improve the design process of complex aircraft and spacecraft. Owing to its modularity, CSA is also applicable to multidisciplinary areas such as biomedical, automotive, ocean engineering, space science, etc.
|
2 |
On a Class of Parametrized Domain Optimization Problems with Mixed Boundary Condition TypesLetona Bolivar, Cristina Felicitas 19 October 2016 (has links)
The methods for solving domain optimization problems depends on the case of study. There are methods that have been developed for the discretized problem, but not much is done in the infinite dimensional case. We analyze the theoretical aspects of the infinite dimensional case for a particular domain optimization problem where a portion of the boundary is parametrized, these results involve the existence of the solution to our problem and the calculation of the derivative of the shape functional.
Shape optimization problems have a long history of mathematical study and a wide range of applications. In recent decades there has been an interest in solving these problems with partial differential equation (PDE) constraints. We consider a special class of PDE-constrained shape optimization problems where different boundary condition types (Dirichlet and Neumann) are imposed on the same boundary segment. We also consider the case where the interface between these different boundary condition types may also be parameter dependent. This study also includes special cases where the shape of the region where the PDE is imposed does not change, but the domain of the partial differential operator is parameter dependent, due to the change in boundary condition type. Our treatment centers on the infinite dimensional formulation of the optimization problem. We consider existence of solutions as well as the calculation of derivatives of the associated shape functionals via adjoint solutions. These derivative formulations serve as a starting point for practical numerical approximations. / Ph. D. / Optimization problems arise in a number of areas and are usually posed as finding values of design parameters that minimize a given cost function. Examples include finding the shape of a car or airplane wing to reduce drag and improve fuel economy which maintaining a desired level of performance. This is an example of a constrained optimization problem where the constraint is described by a physical model known as a partial differential equation (PDE). For shape optimization problems, we want to find the best shape to minimizes a certain cost function, and the cost depends on the shape through the solution to the PDE. The strategy for solving a shape optimization problem depends on the particular problem at hand. In many cases, one assumes that the solution of an optimization problem exists, so the development of methods to find or approximate possible solutions is the first step. In this dissertation, we study some theoretical aspects of the problem that can be used to guarantee the existence of an optimal (or locally optimal) solution to the problem. We focus our attention on a special class of PDE constraints where the cost function is calculated over a domain with an unknown portion that needs to be determined. We further consider a special case of boundary conditions for the PDE constraints known as mixed boundary conditions. In this work, we study the theoretical aspects to guarantee the existence of a solution, and then we provide formulations of the derivatives that permit algorithms to search for the shape of the domain that minimizes a given cost function. These formulations are important to develop efficient numerical approximations.
|
3 |
Multi-Property Topology Optimisation with the Level-Set MethodVivien Joy Challis Unknown Date (has links)
We present a level-set algorithm for topology optimisation and demonstrate its capabilities and advantages in a variety of settings. The algorithm uses discrete element densities so that interpolation schemes are avoided and the boundary of the design is always well defined. A review of the level-set method for topology optimisation, and a description of the mathematical concepts behind the level-set algorithm are given in the introductory chapters. A compact Matlab implementation of the algorithm provides explicit implementation details for the simple example of compliance minimisation with a volume constraint. The remainder of the thesis presents original results obtained using the level-set algorithm. As a new application, we use topology optimisation to maximise fracture resistance. Fracture resistance is assumed to be related to the elastic energy released by a crack propagating in a normal direction from parts of the boundary that are in tension. We develop a suitable fracture resistance objective functional, derive its shape derivative and apply the level-set algorithm to simple examples. Topology optimisation methods that involve intermediate density elements are not suitable to solve this problem because the boundary of the design is not well defined. Our results indicate that the algorithm correctly optimises for fracture resistance. As the method is computationally intensive, we suggest simpler objective functionals that could be used as a proxy for fracture resistance. For example, a perimeter penalty could be added to the compliance objective functional in conjunction with a non-linear elasticity law where the Young's modulus in tension is lower than in compression. The level-set method has only recently been applied to fluid flow problems. We utilise the level-set algorithm to minimise energy dissipation in Stokes flows in both two and three dimensions. The discrete element densities allow the no-slip boundary condition to be applied directly. The Stokes equations therefore need only be solved in the fluid region of the design: this results in significant computational savings compared to conventional material distribution approaches. In order to quantify the computational savings the optimisation problems are resolved using an interpolation scheme to simulate the no-slip boundary condition. This significant advantage of the level-set method for fluid flow problems has not been noted by other authors. The algorithm produces results consistent with those obtained by other topology optimisation approaches, and solves large-scale three dimensional problems with modest computational cost. The first examples of three dimensional periodic microstructure design with the level-set method are presented in this thesis. The level-set algorithm is extended to deal with multiple constraints. This is needed so that materials can be designed with symmetry requirements imposed on their effective properties. To demonstrate the capabilities of the approach, unit cells are designed separately to maximise conductivity and bulk modulus with an isotropy requirement. The resulting materials have properties very close to the relevant Hashin-Shtrikman bounds. The algorithm is then applied to multifunctional material design: unit cells are designed to give isotropic materials that have maximum bulk modulus and maximum conductivity. Cross-property bounds indicate the near-optimality of the microstructures obtained. The design space of the problem is extensively explored with different coefficients of the conductivity and bulk modulus in the objective and different volume constraints. We hypothesise the existence of theoretically optimal single-scale microstructures with the topologies of the computationally optimised microstructures we have found. Structures derived from the Schwartz primitive (P) and diamond (D) minimal surfaces have previously been presented as good multifunctional composites. These structures are elastically anisotropic. Although they have similar conductivity, they have stiffness properties inferior to several of the isotropic optimised microstructures.
|
4 |
Multi-Property Topology Optimisation with the Level-Set MethodVivien Joy Challis Unknown Date (has links)
We present a level-set algorithm for topology optimisation and demonstrate its capabilities and advantages in a variety of settings. The algorithm uses discrete element densities so that interpolation schemes are avoided and the boundary of the design is always well defined. A review of the level-set method for topology optimisation, and a description of the mathematical concepts behind the level-set algorithm are given in the introductory chapters. A compact Matlab implementation of the algorithm provides explicit implementation details for the simple example of compliance minimisation with a volume constraint. The remainder of the thesis presents original results obtained using the level-set algorithm. As a new application, we use topology optimisation to maximise fracture resistance. Fracture resistance is assumed to be related to the elastic energy released by a crack propagating in a normal direction from parts of the boundary that are in tension. We develop a suitable fracture resistance objective functional, derive its shape derivative and apply the level-set algorithm to simple examples. Topology optimisation methods that involve intermediate density elements are not suitable to solve this problem because the boundary of the design is not well defined. Our results indicate that the algorithm correctly optimises for fracture resistance. As the method is computationally intensive, we suggest simpler objective functionals that could be used as a proxy for fracture resistance. For example, a perimeter penalty could be added to the compliance objective functional in conjunction with a non-linear elasticity law where the Young's modulus in tension is lower than in compression. The level-set method has only recently been applied to fluid flow problems. We utilise the level-set algorithm to minimise energy dissipation in Stokes flows in both two and three dimensions. The discrete element densities allow the no-slip boundary condition to be applied directly. The Stokes equations therefore need only be solved in the fluid region of the design: this results in significant computational savings compared to conventional material distribution approaches. In order to quantify the computational savings the optimisation problems are resolved using an interpolation scheme to simulate the no-slip boundary condition. This significant advantage of the level-set method for fluid flow problems has not been noted by other authors. The algorithm produces results consistent with those obtained by other topology optimisation approaches, and solves large-scale three dimensional problems with modest computational cost. The first examples of three dimensional periodic microstructure design with the level-set method are presented in this thesis. The level-set algorithm is extended to deal with multiple constraints. This is needed so that materials can be designed with symmetry requirements imposed on their effective properties. To demonstrate the capabilities of the approach, unit cells are designed separately to maximise conductivity and bulk modulus with an isotropy requirement. The resulting materials have properties very close to the relevant Hashin-Shtrikman bounds. The algorithm is then applied to multifunctional material design: unit cells are designed to give isotropic materials that have maximum bulk modulus and maximum conductivity. Cross-property bounds indicate the near-optimality of the microstructures obtained. The design space of the problem is extensively explored with different coefficients of the conductivity and bulk modulus in the objective and different volume constraints. We hypothesise the existence of theoretically optimal single-scale microstructures with the topologies of the computationally optimised microstructures we have found. Structures derived from the Schwartz primitive (P) and diamond (D) minimal surfaces have previously been presented as good multifunctional composites. These structures are elastically anisotropic. Although they have similar conductivity, they have stiffness properties inferior to several of the isotropic optimised microstructures.
|
5 |
Opérateur intégral volumique en théorie de diffraction électromagnétique / The volume integral operator in electromagnetic scatteringSakly, Hamdi 23 May 2014 (has links)
Le problème de diffraction électromagnétique gouverné par les équations de Maxwell admet une formulation équivalente par une équation intégrale volumique fortement singulière. Cette thèse a pour but d'examiner l'opérateur intégral qui décrit cette équation. La première partie de ce manuscrit porte sur l'étude de son spectre essentiel. Cette analyse est intéressante en vue d'obtenir les conditions nécessaires et suffisantes pour avoir l'unicité de solutions du problème surtout quand il s'agirait de la diffraction des ondes par des matériaux négatifs où les techniques classiques perdent leurs utilité. Après avoir justifié le bon choix du cadre fonctionnel, nous étudions tout d'abord le cas où les paramètres caractéristiques du milieu à savoir la permittivité électrique et la perméabilité magnétique sont constants par morceaux avec discontinuité au travers du bord de la cible. Dans ce cadre, nous donnons une réponse complète à la question pour les domaines réguliers et Lipschitziens. Ensuite, et à l'aide d'une technique de localisation, nous donnons une extension de ces résultats dans le cas des paramètres réguliers par morceaux pour deux opérateurs intégraux, l'un qui correspond à la version diélectrique du problème et l'autre pour sa version magnétique. Nous terminons cette thèse par l'étude de la dérivée de forme des opérateurs diélectrique et magnétique et nous en déduisons une nouvelle caractérisation de la dérivée de forme des solutions des deux problèmes de diffraction. / The electromagnetic diffraction problem which is governed by the Maxwell equations admits an equivalent formulation in terms of a strongly singular volume integral equation. This thesis aims to examine the integral operator that describes this equation. The first part of this document focuses on the study of its essential spectrum. This analysis is interesting to get the necessary and sufficient conditions of solution uniqueness of the problem especially when we consider the diffraction of waves by negative materials where classic tools lose their usefulness. After justifying the adequate choice of the functional framework, we first study the case where the characteristics parameters of the medium like the electric permittivity and magnetic permeability are piecewise constant with discontinuity across the boundary of the target. In this context, we give a full answer to the question for smooth and Lipschitz domains. Then, by using a localization technique, we give an extension of those results in the case of piecewise regular parameters for two integrals operators, one which corresponds to the dielectric version of the problem and the other for its magnetic version. We end this thesis by the study of the shape derivative of the dielectric and magnetic operators and we derive a new characterization of the shape derivative of the two diffraction problems solution.
|
6 |
Détection d’un objet immergé dans un fluide / Location of an object immersed in a fluidCaubet, Fabien 29 June 2012 (has links)
Cette thèse s’inscrit dans le domaine des mathématiques appelé optimisation de formes. Plus précisément, nous étudions ici un problème inverse de détection à l’aide du calcul de forme et de l’analyse asymptotique. L’objectif est de localiser un objet immergé dans un fluide visqueux, incompressible et stationnaire. Les questions principales qui ont motivé ce travail sont les suivantes :– peut-on détecter un objet immergé dans un fluide à partir d’une mesure effectuée à la surface ?– peut-on reconstruire numériquement cet objet, i.e. approcher sa position et sa forme, à partir de cette mesure ?– peut-on connaître le nombre d’objets présents dans le fluide en utilisant cette mesure ?Les résultats obtenus sont décrits dans les cinq chapitres de cette thèse :– le premier met en place un cadre mathématique pour démontrer l’existence des dérivées de forme d’ordre un et deux pour les problèmes de détection d’inclusions ;– le deuxième analyse le problème de détection à l’aide de l’optimisation géométrique de forme : un résultat d’identifiabilité est montré, le gradient de forme de plusieurs types de fonctionnelles de forme est caractérisé et l’instabilité de ce problème inverse est enfin démontrée ;– le chapitre 3 utilise nos résultats théoriques pour reconstruire numériquement des objets immergés dans un fluide à l’aide d’un algorithme de gradient de forme ;– le chapitre 4 analyse la localisation de petites inclusions dans un fluide à l’aide de l’optimisation topologique de forme : le gradient topologique d’une fonctionnelle de forme de Kohn-Vogelius est caractérisé ;– le dernier chapitre utilise cette dernière expression théorique pour déterminer numériquement le nombre et la localisation de petits obstacles immergés dans un fluide à l’aide d’un algorithme de gradient topologique. / This dissertation takes place in the mathematic field called shape optimization. More precisely, we focus on a detecting inverse problem using shape calculus and asymptotic analysis. The aim is to localize an object immersed in a viscous, incompressible and stationary fluid. This work was motivated by the following main questions:– can we localize an obstacle immersed in a fluid from a boundary measurement?– can we reconstruct numerically this object, i.e. be close to its localization and its shape, from this measure?– can we know how many objects are included in the fluid using this measure?The results are described in the five chapters of the thesis:– the first one gives a mathematical framework in order to prove the existence of the shape derivatives oforder one and two in the frame of the detection of inclusions;– the second one analyzes the detection problem using geometric shape optimization: an identifiabilityresult is proved, the shape gradient of several shape functionals is characterized and the instability of thisinverse problem is proved;– the chapter 3 uses our theoretical results in order to reconstruct numerically some objets immersed in a fluid using a shape gradient algorithm;– the fourth chapter analyzes the detection of small inclusions in a fluid using the topological shape optimization : the topological gradient of a Kohn-Vogelius shape functional is characterized;– the last chapter uses this theoretical expression in order to determine numerically the number and the location of some small obstacles immersed in a fluid using a topological gradient algorithm.
|
Page generated in 0.0735 seconds