Spelling suggestions: "subject:"shorten path problem"" "subject:"shortened path problem""
21 |
Abordagem neuro-genética para mapeamento de problemas de conexão em otimização combinatória / Neurogenetic approach for mapping connection problems in combinatorial optimizationMatheus Giovanni Pires 21 May 2009 (has links)
Devido a restrições de aplicabilidade presentes nos algoritmos para a solução de problemas de otimização combinatória, os sistemas baseados em redes neurais artificiais e algoritmos genéticos oferecem um método alternativo para solucionar tais problemas eficientemente. Os algoritmos genéticos devem a sua popularidade à possibilidade de percorrer espaços de busca não-lineares e extensos. Já as redes neurais artificiais possuem altas taxas de processamento por utilizarem um número elevado de elementos processadores simples com alta conectividade entre si. Complementarmente, redes neurais com conexões realimentadas fornecem um modelo computacional capaz de resolver vários tipos de problemas de otimização, os quais consistem, geralmente, da otimização de uma função objetivo que pode estar sujeita ou não a um conjunto de restrições. Esta tese apresenta uma abordagem inovadora para resolver problemas de conexão em otimização combinatória utilizando uma arquitetura neuro-genética. Mais especificamente, uma rede neural de Hopfield modificada é associada a um algoritmo genético visando garantir a convergência da rede em direção aos pontos de equilíbrio factíveis que representam as soluções para os problemas de otimização combinatória. / Due to applicability constraints involved with the algorithms for solving combinatorial optimization problems, systems based on artificial neural networks and genetic algorithms are alternative methods for solving these problems in an efficient way. The genetic algorithms must its popularity to make possible cover nonlinear and extensive search spaces. On the other hand, artificial neural networks have high processing rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. Additionally, neural networks with feedback connections provide a computing model capable of solving a large class of optimization problems, which refer to optimization of an objective function that can be subject to constraints. This thesis presents a novel approach for solving connection problems in combinatorial optimization using a neurogenetic approach. More specifically, a modified Hopfield neural network is associated with a genetic algorithm in order to guarantee the convergence of the network to the equilibrium points, which represent feasible solutions for the combinatorial optimization problems.
|
22 |
Shared Mobility Optimization in Large Scale Transportation Networks: Methodology and ApplicationsJanuary 2018 (has links)
abstract: Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). Previous research has made a number of important contributions to the challenging pickup and delivery problem along different formulation or solution approaches. However, there are a number of modeling and algorithmic challenges for a large-scale deployment of a vehicle routing and scheduling algorithm, especially for regional networks with various road capacity and traffic delay constraints on freeway bottlenecks and signal timing on urban streets. The main thrust of this research is constructing hyper-networks to implicitly impose complicated constraints of a vehicle routing problem (VRP) into the model within the network construction. This research introduces a new methodology based on hyper-networks to solve the very important vehicle routing problem for the case of generic ride-sharing problem. Then, the idea of hyper-networks is applied for (1) solving the pickup and delivery problem with synchronized transfers, (2) computing resource hyper-prisms for sustainable transportation planning in the field of time-geography, and (3) providing an integrated framework that fully captures the interactions between supply and demand dimensions of travel to model the implications of advanced technologies and mobility services on traveler behavior. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2018
|
23 |
Uma col?nia de formigas para o caminho mais curto multiobjetivoBezerra, Leonardo Cesar Teon?cio 07 February 2011 (has links)
Made available in DSpace on 2015-03-03T15:47:46Z (GMT). No. of bitstreams: 1
LeonardoCTB_DISSERT.pdf: 2119704 bytes, checksum: 5bdd21de8bfa668bba821593cdd5289f (MD5)
Previous issue date: 2011-02-07 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Multi-objective combinatorial optimization problems have peculiar characteristics that
require optimization methods to adapt for this context. Since many of these problems are
NP-Hard, the use of metaheuristics has grown over the last years. Particularly, many
different approaches using Ant Colony Optimization (ACO) have been proposed. In this
work, an ACO is proposed for the Multi-objective Shortest Path Problem, and is compared
to two other optimizers found in the literature. A set of 18 instances from two
distinct types of graphs are used, as well as a specific multiobjective performance assessment
methodology. Initial experiments showed that the proposed algorithm is able
to generate better approximation sets than the other optimizers for all instances. In the
second part of this work, an experimental analysis is conducted, using several different
multiobjective ACO proposals recently published and the same instances used in the first
part. Results show each type of instance benefits a particular type of instance benefits a
particular algorithmic approach. A new metaphor for the development of multiobjective
ACOs is, then, proposed. Usually, ants share the same characteristics and only few works
address multi-species approaches. This works proposes an approach where multi-species
ants compete for food resources. Each specie has its own search strategy and different
species do not access pheromone information of each other. As in nature, the successful
ant populations are allowed to grow, whereas unsuccessful ones shrink. The approach introduced
here shows to be able to inherit the behavior of strategies that are successful
for different types of problems. Results of computational experiments are reported and
show that the proposed approach is able to produce significantly better approximation
sets than other methods / Problemas de otimiza??o combinat?ria multiobjetivo apresentam caracter?sticas peculiares
que exigem que t?cnicas de otimiza??o se adaptem a esse contexto. Como muitos
desses problemas s?o NP-?rduos, o uso de metaheur?sticas tem crescido nos ?ltimos anos.
Particularmente, muitas abordagens que utilizam a Otimiza??o por Col?nias de Formigas
t?m sido propostas. Neste trabalho, prop?e-se um algoritmo baseado em col?nias de formigas
para o Problema do Caminho mais Curto Multiobjetivo, e compara-se o algoritmo
proposto com dois otimizadores encontrados na literatura. Um conjunto de 18 inst?ncias
oriundas de dois tipos de grafos ? utilizado, al?m de uma metodologia espec?fica para a
avalia??o de otimizadores multiobjetivo. Os experimentos iniciais mostram que o algoritmo
proposto consegue gerar conjuntos de aproxima??o melhores que os demais otimizadores
para todas as inst?ncias. Na segunda parte do trabalho, uma an?lise experimental de diferentes
abordagens publicadas para col?nias de formigas multiobjetivo ? realizada, usando
as mesmas inst?ncias. Os experimentos mostram que cada tipo de inst?ncia privilegia uma
abordagem algor?tmica diferente. Uma nova met?fora para o desenvolvimento deste tipo
de metaheur?stica ? ent?o proposta. Geralmente, formigas possuem caracter?sticas comuns
e poucos artigos abordam o uso de m?ltiplas esp?cies. Neste trabalho, uma abordagem
com m?ltiplas esp?cies competindo por fontes de comida ? proposta. Cada esp?cie possui
sua pr?pria estrat?gia de busca e diferentes esp?cies n?o tem acesso ? informa??o dada
pelo ferom?nio das outras. Como na natureza, as popula??es de formigas bem sucedidas
tem a chance de crescer, enquanto as demais se reduzem. A abordagem apresentada aqui
mostra-se capaz de herdar o comportamento de estrat?gias bem-sucedidas em diferentes
tipos de inst?ncias. Resultados de experimentos computacionais s?o relatados e mostram
que a abordagem proposta produz conjuntos de aproxima??o significativamente melhores
que os outros m?todos
|
24 |
Robustness and preferences in combinatorial optimizationHites, Romina 15 December 2005 (has links)
In this thesis, we study robust combinatorial problems with interval data. We introduce several new measures of robustness in response to the drawbacks of existing measures of robustness. The idea of these new measures is to ensure that the solutions are satisfactory for the decision maker in all scenarios, including the worst case scenario. Therefore, we have introduced a threshold over the worst case costs, in which above this threshold, solutions are no longer satisfactory for the decision maker. It is, however, important to consider other criteria than just the worst case.<p>Therefore, in each of these new measures, a second criteria is used to evaluate the performance of the solution in other scenarios such as the best case one. <p><p>We also study the robust deviation p-elements problem. In fact, we study when this solution is equal to the optimal solution in the scenario where the cost of each element is the midpoint of its corresponding interval. <p><p>Then, we finally formulate the robust combinatorial problem with interval data as a bicriteria problem. We also integrate the decision maker's preferences over certain types of solutions into the model. We propose a method that uses these preferences to find the set of solutions that are never preferred by any other solution. We call this set the final set. <p><p>We study the properties of the final sets from a coherence point of view and from a robust point of view. From a coherence point of view, we study necessary and sufficient conditions for the final set to be monotonic, for the corresponding preferences to be without cycles, and for the set to be stable.<p>Those that do not satisfy these properties are eliminated since we believe these properties to be essential. We also study other properties such as the transitivity of the preference and indifference relations and more. We note that many of our final sets are included in one another and some are even intersections of other final sets. From a robust point of view, we compare our final sets with different measures of robustness and with the first- and second-degree stochastic dominance. We show which sets contain all of these solutions and which only contain these types of solutions. Therefore, when the decision maker chooses his preferences to find the final set, he knows what types of solutions may or may not be in the set.<p><p>Lastly, we implement this method and apply it to the Robust Shortest Path Problem. We look at how this method performs using different types of randomly generated instances. <p> / Doctorat en sciences, Orientation recherche opérationnelle / info:eu-repo/semantics/nonPublished
|
25 |
Système de gestion du stationnement dans un environnement dynamique et multi-objectifs / Parking management system in a dynamic and multi-objective environmentRatli, Mustapha 12 December 2014 (has links)
Aujourd'hui, le problème de stationnement devient l'un des enjeux majeurs de la recherche dans la planification des transports urbains et la gestion du trafic. En fait, les conséquences de l'absence de places de stationnement ainsi que la gestion inadéquate de ces installations sont énormes. L'objectif de cette thèse est de fournir des algorithmes efficaces et robustes afin que les conducteurs gagnent du temps et de l'argent et aussi augmenter les revenus des gestionnaires de parking. Le problème est formulé comme un problème d'affectation multi-objectifs dans des environnements statique et dynamique. Tout d'abord, dans l'environnement statique, nous proposons de nouvelles heuristiques en deux phases pour calculer une approximation de l'ensemble des solutions efficaces pour un problème bi-objectif. Dans la première phase, nous générons l'ensemble des solutions supportées par un algorithme dichotomique standard. Dans la deuxième phase, nous proposons quatre métaheuristiques pour générer une approximation des solutions non supportées. Les approches proposées sont testées sur le problème du plus court chemin bi-objectif et le problème d'affectation bi-objectif. Dans le contexte de l'environnement dynamique, nous proposons une formulation du problème sous forme d'un programme linéaire en nombres entiers mixtes qui est résolue à plusieurs reprises sur un horizon de temps donné. Les fonctions objectives considérées, permettent un équilibre entre la satisfaction des conducteurs et l'intérêt du gestionnaire de parking. Deux approches sont proposées pour résoudre ce problème d'affectation dynamique avec ou sans phase d'apprentissage. Pour renforcer la phase d'apprentissage, un algorithme à estimation de distribution est proposé pour prévoir la demande future. Pour évaluer l'efficacité des algorithmes proposés, des essais de simulation ont été effectués. Aussi une mise en œuvre pilote a été menée dans le parking à l'Université de Valenciennes en utilisant une plateforme existante, appelée Context Aware Transportation Services (CATS), qui permet le déploiement dynamique de services. Cette plate-forme peut dynamiquement passer d'une approche à l'autre en fonction du contexte. Enfin cette thèse s'inscrit dans le projet SYstem For Smart Road Applications ( SYFRA). / The parking problem is nowadays one of the major issues in urban transportation planning and traffic management research. In fact, the consequences of the lack of parking slots along with the inadequate management of these facilities are tremendous. The aim of this thesis is to provide efficient and robust algorithms in order to save time and money for drivers and to increase the income of parking managers. The problem is formulated as a multi-objective assignment problem in static and dynamic environments. First, for the static environment, we propose new two-phase heuristics to calculate an approximation of the set of efficient solutions for a bi-objective problem. In the first phase, we generate the supported efficient set with a standard dichotomic algorithm. In the second phase we use four metaheuristics to generate an approximation of the non-supported efficient solutions. The proposed approaches are tested on the bi-objective shortest path problem and the biobjective assignment problem. For the dynamic environment, we propose a mixed integer linear programming formulation that is solved several times over a given horizon. The objective functions consist of a balance between the satisfaction of drivers and the interest of the parking managers. Two approaches are proposed for this dynamic assignment problem with or without learning phase. To reinforce the learning phase, an estimation of distribution algorithm is proposed to predict the future demand. In order to evaluate the effectiveness of the proposed algorithms, simulation tests have been carried out. A pilot implementation has also been conducted in the parking of the University of Valenciennes, using an existing platform called framework for context aware transportation services, which allows dynamic deployment of services. This platform can dynamically switch from one approach to another depending on the context. This thesis is part of the project SYstem For Smart Road Applications (SYFRA).
|
26 |
[en] AN EFFICIENT ALGORITHM FOR THE ADJACENT QUADRATIC SHORTEST PATH PROBLEM WITH APPLICATION TO SMOOTH TRANSMISSION LINE ROUTING / [pt] UM ALGORITMO EFICIENTE PARA O PROBLEMA DE CAMINHO MAIS CURTO QUADRÁTICO ADJACENTE COM APLICAÇÃO NO DESENHO DE ROTAS SUAVES DE LINHAS DE TRANSMISSÃOJOAO MARCOS DUSI VILELA 13 January 2022 (has links)
[pt] Essa dissertação explora o problema roteamento de linhas de transmissão (LT) através da solução do caminho mais curto em um grafo sem ciclos de melhoria, considerando custos quadráticos para arcos adjacentes. Esse problema é conhecido como o Problema do Caminho Mínimo Quadrático
Adjacente (CMQA). Esse trabalho apresenta uma descrição teórica do CMQA, propõe uma extensão do algoritmo Dijkstra (aqDijkstra) para solução de CMQA em tempo polinomial e discute como o algoritimo pode ser utilizado em metodologias de roteamento de LT. Em seguida, apresentamos uma melhoria estendendo o algoritmo A estrela para sua forma adjacente quadrática (aqA estrela), incluindo uma etapa de busca reversa para estimação de custos de chegada. Foram feitos experimentos computacionais contemplando a variação de custos quadráticos, geração de instâncias aleatórias, testes de estresse e comparação com abordagens já utilizadas na literatura. Os resultados sugerem que: (i) aqA estrela teve o melhor desempenho, atingindo tempos de busca 40 vezes mais rápidos que aqDijkstra e 50 vezes mais rápido que a abordagem mais rápida apresentada pela literatura; (ii) a eficiência dos algoritmos não foi afetada pela variação dos custos quadráticos; (iii) os algoritmos propostos aqA estrela e aqDijkstra também foram mais eficientes nas instancias aleatórias, reafirmando a superioridade dos mesmos. Duas aplicações
são apresentadas, uma de objetivo ilustrativo e outra para um caso real. O algoritimo aqA estrela foi usado para solução de um CMQA em um grafo de quase um bilhão de arcos quadraticos, resultado em uma rota proposta com custos adicionais três vezes menor. / [en] This dissertation explores the problem of transmission line (TL) routing through finding the shortest path on an undirected graph with no improving cycles, considering quadratic costs for adjacent arcs. This problem
is known as the Adjacent Quadratic Shortest Path Problem (AQSPP). This work provides the theoretical background for the AQSPP, proposes an extension of Dijkstra s algorithm (aqDijkstra) for solving AQSPP in
polynomial-time and discusses how AQSPP can be included in routing methodologies. Furthermore, it is presented an improvement to the algorithm: the adjacent quadratic A star (aq A star) with a backward search for cost-togo estimation, to speed up search. For computational experiments, aqDijkstra
and aqA star are benchmarked with other algorithms from the technical literature. The search behavior of the algorithms is also studied within different tests, including: quadratic cost variation, randomly generated graph instances and increasingly larger instances. The numerical results suggests that: (i) aqA star outperformed all the other algorithms, being 40 times faster than aqDijsktra and 50 times faster than the fastest benchmark algorithm; (ii) the studied algorithms do not lose efficiency as quadratic costs increase;
(iii) aqA star and aqDijkstra were faster benchmark algorithms under random graph instances, indicating their robustness. Two applications are provided, one for illustrative purposes, and another to study performance on a real application. The aqA star algorithm solved an AQSSP on a graph with almost a
billion quadratic arcs and provided a route with three times lower additional costs.
|
27 |
Stochastic Combinatorial Optimization / Optimisation combinatoire stochastiqueCheng, Jianqiang 08 November 2013 (has links)
Dans cette thèse, nous étudions trois types de problèmes stochastiques : les problèmes avec contraintes probabilistes, les problèmes distributionnellement robustes et les problèmes avec recours. Les difficultés des problèmes stochastiques sont essentiellement liées aux problèmes de convexité du domaine des solutions, et du calcul de l’espérance mathématique ou des probabilités qui nécessitent le calcul complexe d’intégrales multiples. A cause de ces difficultés majeures, nous avons résolu les problèmes étudiées à l’aide d’approximations efficaces.Nous avons étudié deux types de problèmes stochastiques avec des contraintes en probabilités, i.e., les problèmes linéaires avec contraintes en probabilité jointes (LLPC) et les problèmes de maximisation de probabilités (MPP). Dans les deux cas, nous avons supposé que les variables aléatoires sont normalement distribués et les vecteurs lignes des matrices aléatoires sont indépendants. Nous avons résolu LLPC, qui est un problème généralement non convexe, à l’aide de deux approximations basée sur les problèmes coniques de second ordre (SOCP). Sous certaines hypothèses faibles, les solutions optimales des deux SOCP sont respectivement les bornes inférieures et supérieures du problème du départ. En ce qui concerne MPP, nous avons étudié une variante du problème du plus court chemin stochastique contraint (SRCSP) qui consiste à maximiser la probabilité de la contrainte de ressources. Pour résoudre ce problème, nous avons proposé un algorithme de Branch and Bound pour calculer la solution optimale. Comme la relaxation linéaire n’est pas convexe, nous avons proposé une approximation convexe efficace. Nous avons par la suite testé nos algorithmes pour tous les problèmes étudiés sur des instances aléatoires. Pour LLPC, notre approche est plus performante que celles de Bonferroni et de Jaganathan. Pour MPP, nos résultats numériques montrent que notre approche est là encore plus performante que l’approximation des contraintes probabilistes individuellement.La deuxième famille de problèmes étudiés est celle relative aux problèmes distributionnellement robustes où une partie seulement de l’information sur les variables aléatoires est connue à savoir les deux premiers moments. Nous avons montré que le problème de sac à dos stochastique (SKP) est un problème semi-défini positif (SDP) après relaxation SDP des contraintes binaires. Bien que ce résultat ne puisse être étendu au cas du problème multi-sac-à-dos (MKP), nous avons proposé deux approximations qui permettent d’obtenir des bornes de bonne qualité pour la plupart des instances testées. Nos résultats numériques montrent que nos approximations sont là encore plus performantes que celles basées sur les inégalités de Bonferroni et celles plus récentes de Zymler. Ces résultats ont aussi montré la robustesse des solutions obtenues face aux fluctuations des distributions de probabilités. Nous avons aussi étudié une variante du problème du plus court chemin stochastique. Nous avons prouvé que ce problème peut se ramener au problème de plus court chemin déterministe sous certaine hypothèses. Pour résoudre ce problème, nous avons proposé une méthode de B&B où les bornes inférieures sont calculées à l’aide de la méthode du gradient projeté stochastique. Des résultats numériques ont montré l’efficacité de notre approche. Enfin, l’ensemble des méthodes que nous avons proposées dans cette thèse peuvent s’appliquer à une large famille de problèmes d’optimisation stochastique avec variables entières. / In this thesis, we studied three types of stochastic problems: chance constrained problems, distributionally robust problems as well as the simple recourse problems. For the stochastic programming problems, there are two main difficulties. One is that feasible sets of stochastic problems is not convex in general. The other main challenge arises from the need to calculate conditional expectation or probability both of which are involving multi-dimensional integrations. Due to the two major difficulties, for all three studied problems, we solved them with approximation approaches.We first study two types of chance constrained problems: linear program with joint chance constraints problem (LPPC) as well as maximum probability problem (MPP). For both problems, we assume that the random matrix is normally distributed and its vector rows are independent. We first dealt with LPPC which is generally not convex. We approximate it with two second-order cone programming (SOCP) problems. Furthermore under mild conditions, the optimal values of the two SOCP problems are a lower and upper bounds of the original problem respectively. For the second problem, we studied a variant of stochastic resource constrained shortest path problem (called SRCSP for short), which is to maximize probability of resource constraints. To solve the problem, we proposed to use a branch-and-bound framework to come up with the optimal solution. As its corresponding linear relaxation is generally not convex, we give a convex approximation. Finally, numerical tests on the random instances were conducted for both problems. With respect to LPPC, the numerical results showed that the approach we proposed outperforms Bonferroni and Jagannathan approximations. While for the MPP, the numerical results on generated instances substantiated that the convex approximation outperforms the individual approximation method.Then we study a distributionally robust stochastic quadratic knapsack problems, where we only know part of information about the random variables, such as its first and second moments. We proved that the single knapsack problem (SKP) is a semedefinite problem (SDP) after applying the SDP relaxation scheme to the binary constraints. Despite the fact that it is not the case for the multidimensional knapsack problem (MKP), two good approximations of the relaxed version of the problem are provided which obtain upper and lower bounds that appear numerically close to each other for a range of problem instances. Our numerical experiments also indicated that our proposed lower bounding approximation outperforms the approximations that are based on Bonferroni's inequality and the work by Zymler et al.. Besides, an extensive set of experiments were conducted to illustrate how the conservativeness of the robust solutions does pay off in terms of ensuring the chance constraint is satisfied (or nearly satisfied) under a wide range of distribution fluctuations. Moreover, our approach can be applied to a large number of stochastic optimization problems with binary variables.Finally, a stochastic version of the shortest path problem is studied. We proved that in some cases the stochastic shortest path problem can be greatly simplified by reformulating it as the classic shortest path problem, which can be solved in polynomial time. To solve the general problem, we proposed to use a branch-and-bound framework to search the set of feasible paths. Lower bounds are obtained by solving the corresponding linear relaxation which in turn is done using a Stochastic Projected Gradient algorithm involving an active set method. Meanwhile, numerical examples were conducted to illustrate the effectiveness of the obtained algorithm. Concerning the resolution of the continuous relaxation, our Stochastic Projected Gradient algorithm clearly outperforms Matlab optimization toolbox on large graphs.
|
28 |
Average case analysis of algorithms for the maximum subarray problemBashar, Mohammad Ehsanul January 2007 (has links)
Maximum Subarray Problem (MSP) is to find the consecutive array portion that maximizes the sum of array elements in it. The goal is to locate the most useful and informative array segment that associates two parameters involved in data in a 2D array. It's an efficient data mining method which gives us an accurate pattern or trend of data with respect to some associated parameters. Distance Matrix Multiplication (DMM) is at the core of MSP. Also DMM and MSP have the worst-case complexity of the same order. So if we improve the algorithm for DMM that would also trigger the improvement of MSP. The complexity of Conventional DMM is O(n³). In the average case, All Pairs Shortest Path (APSP) Problem can be modified as a fast engine for DMM and can be solved in O(n² log n) expected time. Using this result, MSP can be solved in O(n² log² n) expected time. MSP can be extended to K-MSP. To incorporate DMM into K-MSP, DMM needs to be extended to K-DMM as well. In this research we show how DMM can be extended to K-DMM using K-Tuple Approach to solve K-MSP in O(Kn² log² n log K) time complexity when K ≤ n/log n. We also present Tournament Approach which solves K-MSP in O(n² log² n + Kn²) time complexity and outperforms the K-Tuple
|
29 |
INTERFACE DE ANÁLISE DA INTERCONEXÃO EM UMA LAN USANDO CORBA / Software development (graphical user interface) that makes possible to analyze the interconnection in a LAN (Local Area Network) using CORBA (Common Object Request Broker Architecture)MONTEIRO, Milson Silva 07 June 2002 (has links)
Made available in DSpace on 2016-08-17T14:52:43Z (GMT). No. of bitstreams: 1
Milson Monteiro.pdf: 1924077 bytes, checksum: 78f931b493f756dec0edee7a465e1099 (MD5)
Previous issue date: 2002-06-07 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / This works concern software development (graphical user interface) that makes
possible to analyze the interconnection in a LAN (Local Area Network) using CORBA (Common
Object Request Broker Architecture) on distributed and heterogeneous environment among
several outlying machines. This works presents paradigms of graphs theory: shortest paths
problems (Dijkstra-Ford-Moore-Belman), maximum flow problems (Edmonds-Karp) and
minimum cost flow problems (Busacker-Gowen) to formalize the interface development. We
discoursed on the graphs theory and networks flows that are essentials to guarantee theoretical
insight. / O objeto de estudo deste trabalho é o desenvolvimento de um software (interface
gráfica do usuário) que possibilita analisar a interconexão de uma LAN (Local Area Network)
usando CORBA (Common Object Request Broker Architecture) em ambientes distribuídos e
heterogêneos entre diversas máquinas periféricas. Este trabalho apresenta os paradigmas da teoria
de grafos: menor caminho (Dijkstra, Ford-Moore-Belman), fluxo máximo (Edmonds-Karp) e
fluxo de custo mínimo (Busacker-Gowen) para formalizar o desenvolvimento da interface.
Discorremos sobre a teoria de grafos e fluxos em redes que são relevantes para garantir o
embasamento teórico.
|
30 |
An Analysis of Consequences of Land Evaluation and Path OptimizationMurekatete, Rachel Mundeli January 2018 (has links)
Planners who are involved in locational decision making often use raster-based geographic information systems (GIS) to quantify the value of land in terms of suitability or cost for a certain use. From a computational point of view, this process can be seen as a transformation of one or more sets of values associated with a grid of cells into another set of such values through a function reflecting one or more criteria. While it is generally anticipated that different transformations lead to different ‘best’ locations, little has been known on how such differences arise (or do not arise). Examples of such spatial decision problems can be easily found in the literature and many of them concern the selection of a set of cells (to which the land use under consideration is allocated) from a raster surface of suitability or cost depending on context. To facilitate GIS’s algorithmic approach, it is often assumed that the quality of the set of cells can be evaluated as a whole by the sum of their cell values. The validity of this assumption must be questioned, however, if those values are measured on a scale that does not permit arithmetic operations. Ordinal scale of measurement in Stevens’s typology is one such example. A question naturally arises: is there a more mathematically sound and consistent approach to evaluating the quality of a path when the quality of each cell of the given grid is measured on an ordinal scale? The thesis attempts to answer the questions highlighted above in the context of path planning through a series of computational experiments using a number of random landscape grids with a variety of spatial and non-spatial structures. In the first set of experiments, we generated least-cost paths on a number of cost grids transformed from the landscape grids using a variety of transformation parameters and analyzed the locations and (weighted) lengths of those paths. Results show that the same pair of terminal cells may well be connected by different least-cost paths on different cost grids though derived from the same landscape grid and that the variation among those paths is affected by how given values are distributed in the landscape grid as well as by how derived values are distributed in the cost grids. Most significantly, the variation tends to be smaller when the landscape grid contains more distinct patches of cells potentially attracting or distracting cost-saving passage or when the cost grid contains a smaller number of low-cost cells. The second set of experiments aims to compare two optimization models, minisum and minimax (or maximin) path models, which aggregate the values of the cells associated with a path using the sum function and the maximum (or minimum) function, respectively. Results suggest that the minisum path model is effective if the path search can be translated into the conventional least-cost path problem, which aims to find a path with the minimum cost-weighted length between two terminuses on a ratio-scaled raster cost surface, but the minimax (or maximin) path model is mathematically sounder if the cost values are measured on an ordinal scale and practically useful if the problem is concerned not with the minimization of cost but with the maximization of some desirable condition such as suitability. / Planerare som arbetar bland annat med att fatta beslut som hänsyftar till vissa lokaler använder ofta rasterbaserade geografiska informationssystem (GIS) för att sätta ett värde på marken med avseende på lämplighet eller kostnad för en viss användning. Ur en beräkningssynpunkt kan denna process ses som en transformation av en eller flera uppsättningar värden associerade med ett rutnät av celler till en annan uppsättning sådana värden genom en funktion som återspeglar ett eller flera kriterier. Medan det generellt förväntas att olika omvandlingar leder till olika "bästa" platser, har lite varit känt om hur sådana skillnader uppstår (eller inte uppstår). Exempel på sådana rumsliga beslutsproblem kan lätt hittas i litteraturen och många av dem handlar om valet av en uppsättning celler (som markanvändningen övervägs tilldelas) från en rasteryta av lämplighet eller kostnad beroende på kontext. För att underlätta GISs algoritmiska tillvägagångssätt antas det ofta att kvaliteten på uppsättningen av celler kan utvärderas som helhet genom summan av deras cellvärden. Giltigheten av detta antagande måste emellertid ifrågasättas om dessa värden mäts på en skala som inte tillåter aritmetiska transformationer. Användning av ordinal skala enligt Stevens typologi är ett exempel av detta. En fråga uppstår naturligt: Finns det ett mer matematiskt sunt och konsekvent tillvägagångssätt för att utvärdera kvaliteten på en rutt när kvaliteten på varje cell i det givna rutnätet mäts med ordinalskala? Avhandlingen försöker svara på ovanstående frågor i samband med ruttplanering genom en serie beräkningsexperiment med hjälp av ett antal slumpmässigt genererade landskapsnät med en rad olika rumsliga och icke-rumsliga strukturer. I den första uppsättningen experiment genererade vi minsta-kostnad rutter på ett antal kostnadsnät som transformerats från landskapsnätverket med hjälp av en mängd olika transformationsparametrar, och analyserade lägen och de (viktade) längderna för dessa rutter. Resultaten visar att samma par ändpunkter mycket väl kan vara sammanbundna med olika minsta-kostnad banor på olika kostnadsraster härledda från samma landskapsraster, och att variationen mellan dessa banor påverkas av hur givna värden fördelas i landskapsrastret såväl som av hur härledda värden fördelas i kostnadsrastret. Mest signifikant är att variationen tenderar att vara mindre när landskapsrastret innehåller mer distinkta grupper av celler som potentiellt lockar eller distraherar kostnadsbesparande passage, eller när kostnadsrastret innehåller ett mindre antal låg-kostnad celler. Den andra uppsättningen experiment syftar till att jämföra två optimeringsmodeller, minisum och minimax (eller maximin) sökmodeller, vilka sammanställer värdena för cellerna som är associerade med en sökväg med summanfunktionen respektive maximum (eller minimum) funktionen. Resultaten tyder på att minisumbanemodellen är effektiv om sökningen av sökvägen kan översättas till det konventionella minsta kostnadsproblemet, vilket syftar till att hitta en väg med den minsta kostnadsvägda längden mellan två terminaler på en ratio-skalad rasterkostyta, men minimax (eller maximin) banmodellen är matematiskt sundare om kostnadsvärdena mäts i ordinär skala och praktiskt användbar om problemet inte bara avser minimering av kostnad men samtidigt maximering av någon önskvärd egenskap såsom lämplighet. / <p>QC 20181002</p>
|
Page generated in 0.1044 seconds