• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 13
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study the nuclease of Vibrio vulnificus by DNA shuffling

Chen, Ying-Chou 26 June 2001 (has links)
The nuclease gene of Vibrio vulnificus, vvn, is 696 bp long encoding a protein¡]Vvn¡^of 232 amino acids. Vvn is a periplasmic protein and is active in the oxidized form. DNA shuffling is a powerful method for in vitro mutational mechanism by homologous recombination with a low level of point mutation . DNA shuffling consists of four steps¡G¡]1¡^preparation of genes to be shuffled, ¡]2¡^random fragmentation with DNase I, ¡]3¡^fragment reassembly by primerless polymerase chain reaction¡]PCR¡^, and¡]4¡^amplification of reassembled products by a conventional PCR. The advantage of this process is that it can be used to rapidly evolve any protein, without any knowledge of its structure. The goal of this work was using DNA shuffling to generate a diversity of mutation in vvn within a short time. Followed by analyzing the DNase activity of periplasmic protein or in vivo, the mutants were divided into three groups for increase, decrease or no change in DNase activity. Randomly DNA sequencing vvn gene of fourteen transformed clones from the three groups showed only one clone has one base change with comparison to wild-type sequence. The mutation is at amino acid 22 of the N-terminus of Vvn, the change is from serine to isoleucine. The relative activity of mutant Vvn was 82 % in DNase and 59 % in RNase. The effect of a single amino acid change on the DNase and RNase activity of Vvn is different. It supports the postulation that there are two distinct but overlapping active sites exist in Vvn.
2

VHTR Core Shuffling Algorithm Using Particle Swarm Optimization ReloPSO-3D

Lakshmipathy, Sathish Kumar 2012 May 1900 (has links)
Improving core performance by reshuffling/reloading the fuel blocks within the core is one of the in-core fuel management methods with two major benefits: a possibility to improve core life and increase core safety. VHTR is a hexagonal annular core reactor with reflectors in the center and outside the fuel rings (3-rings). With the block type fuel assemblies, there is an opportunity for muti-dimensional fuel bocks movement within the core during scheduled reactor refueling operations. As the core is symmetric, by optimizing the shuffle operation of 1/6th of the core, the same process can be repeated through the remaining 5/6th of the core. VHTR has 170 fuel blocks in the core of which 50 are control rod blocks and are not movable to regular fuel block locations. The reshuffling problem now is to find the best combination of 120 fuel blocks that has a minimized power peaking and/or increased core life under safety constraints among the 120! combinations. For evaluating each LP during the shuffling, a fitness function that is developed from the parameters affecting the power peaking and core life is required. Calculating the power peaking at each step using Monte Carlo simulations on a whole core exact geometry model is a time consuming process and not feasible. A parameter is developed from the definitions of reactivity and power peaking factor called the localized reactivity potential that can be estimated for every block movement based on the reaction rates and atom densities of the initial core burnup at the time of shuffling. The algorithm (ReloPSO) is based on Particle Swarm Optimization algorithm the search process by improving towards the optimum from a set of random LPs based on the fitness function developed with the reactivity potential parameter. The algorithm works as expected and the output obtained has a flatter reactivity profile than the input. The core criticality is found to increase when shuffled closer to end of life. Detailed analysis on the burn runs after shuffling at different time of core operation is required to correlate the estimated and actual values of the reactivity parameter and to optimize the time of shuffle.
3

Strain improvement of Scheffersomyces stipitis for the bioconversion of lignocellulosic biomass into ethanol.

Richardson, Terri 05 1900 (has links)
Pretreatment of recalcitrant lignocellulosic biomass to release sugars for bioconversion into ethanol produces fermentation inhibitors. Increasing yeast inhibitor tolerance should reduce production time and cost. UV mutagenesis followed by genome shuffling using cross mating was performed on Scheffersomyces stipitis strain GS301, a genome shuffled strain with increased tolerance to spent sulphite liquor (SSL). The main fermentation inhibitors in SSL are acetic acid, hydroxymethylfurfural (HMF), and various phenolics. UV mutagenesis resulted in acetic acid tolerant mutants, but they were phenotypically unstable. However, two rounds of UV mutagenesis followed by five rounds of genome shuffling resulted in strains EVB105, EVB205 and EVB505 with increased SSL tolerance and improved acetic acid and HMF tolerance. When fermenting undiluted SSL at pH 5.5, the three strains utilized sugars faster producing higher maximum ethanol than GS301. This study demonstrates that UV mutagenesis with genome shuffling can significantly improve inhibitor tolerance and fermentation performance of yeast. / NSERC Bioconversion Network
4

Glycosylated green fluorescent protein for carbohydrate binding protein analysis

Martin, Andrew January 2015 (has links)
The interactions of glycoconjugates with carbohydrate binding proteins are responsible for a wide range of recognition events in vivo; including immune response, cell adhesion and signal transduction. Glycoconjugates have already found many medicinal uses as therapeutic and diagnostic agents, but their full potential is yet to be realised. Access to a variety of homogeneously glycosylated glycoproteins is essential for the study of these important carbohydrate binding events. This requires the chemical synthesis and attachment of biologically relevant glycans to unglycosylated protein scaffolds in a site selective manner. Here we describe the use of a range of glycosyl iodoacetamides to glycosylate proteins selectively via their cysteine residues. We have chosen the green fluorescent protein mutant GFPuv for use as a protein scaffold due its known tolerance of two cysteine mutations (E6C and I229C) and the previous successful derivatisation of these cysteines with iodoacetamides.1 The inherent fluorescence of GFPuv also makes it a useful candidate for fluorescence based binding assays or cell labelling studies.16 active, mutants of GFPuv were created using a mixture of site directed mutagenesis and DNA shuffling (including one mutant containing six reactive cysteine residues). This was achieved by producing random combinations of two synthetic variants of GFPuv, one of which contained 33 surface cysteines. 94 bacterial colonies expressing active GFPuv were then sequenced and the new chimeric genes analysed. Four monosaccharides and one trisaccharide (N-glycan core mimic) suitable for the chemical glycosylation via cysteines were synthesised and successfully used to create a selection of homogeneous neoglycoproteins. These neoglycoproteins were demonstrated to interact differently with different lectins (including ConA, GNL and Jacalin) in a qualitative fluorescence based assay. Interactions were shown to vary with glycan structure, position of glycosylation sites and the number of glycosylation sites.
5

História evolutiva de exon shuffling em eucariotos / Evolutionary history of exon shuffling in eukaryotes

França, Gustavo Starvaggi 11 February 2010 (has links)
Exon shuffling foi primeiramente proposto por Walter Gilbert em 1978 como um mecanismo em que exons de diferentes genes podem ser combinados, levando à formação de novos genes. O mecanismo de exon shuffling é favorecido por recombinações intrônicas e está correlacionado com a simetria de exons. Evidências deste mecanismo provém de análises de combinações de fases de introns, correlações entre bordas de exons e de domínios protéicos e da recorrência de domínios em diversas proteínas. Dessa forma, a evolução de proteínas formadas por exon shuffling pode ser inferida considerando a organização exon-intron dos genes, o padrão de combinações de fases de introns e a organização de domínios nas proteínas. Neste sentido, regiões protéicas que possivelmente foram originadas por eventos de exon shuffling foram identificadas através de análises em larga escala em diferentes espécies eucarióticas. A estratégia foi baseada no alinhamento entre todas as proteínas anotadas de uma determinada espécie e a verificação da presença de introns e suas respectivas fases em torno das regiões alinhadas. Nós verificamos que eventos de exon shuffling em eucariotos antigos, de origem anterior aos Metazoa, são predominantemente simétricos 0-0, enquanto nos metazoários a predominância é de unidades simétricas 1-1. Esses dados confirmam idéias anteriores de que a transição para a multicelularidade animal foi marcada pelo embaralhamento extensivo de exons e domínios 1-1. O metazoário basal Trichoplax adhaerens pode ser considerado um representante desta transição, evidenciada pelas freqüências balanceadas de regiões simétricas 0-0 e 1-1. O sinal de flanqueamento por introns em torno das bordas de domínios protéicos confirmou os resultados obtidos através dos alinhamentos, com a prevalência de domínios 0-0 em não metazoários e 1-1 em metazaoários. Um agrupamento hierárquico de domínios flanqueados por introns foi construído, permitindo identificar domínios ou grupos de domínios com evidência de expansões em períodos específicos, como nos vertebrados. Por fim, os genes envolvidos em eventos de exon shuffling foram analisados quanto ao enriquecimento em termos do Gene Ontology. Os resultados indicaram que este mecanismo contribuiu significativamente para a formação de genes relacionados com uma grande diversidade de termos, alguns dos quais envolvidos diretamente com características de metazoários e vertebrados, tais como matriz extracelular, adesão, coagulação sangüínea, processos do sistema imune e sistema nervoso / Exon shuffling was first proposed by Walter Gilbert in 1979 as a mechanism in which exons from different genes could be combined to lead the creation of new genes. The mechanism of exon shuffling is favored by intronic recombinations and it is correlated with symmetry of exons. Evidence of this mechanism come from analyses of intron phase combinations, correlations between the borders of exons and domains and domain recurrence in several proteins. Taking this into account, the evolution of proteins formed by exon shuffling can be inferred regarding the exonintron organization of the genes, the pattern of intron phase combinations and the protein domain organization. In this sense, protein regions that were probably arose by exon shuffling events were identified through a large scale analysis in several eukaryotic species. The strategy was based on alignments between all annotated proteins from a given species. Then, the aligned regions were verified in respect with intron phase combinations surrounding them. We have found that exon shuffling events in early eukaryotes are preferentially symmetric of phase 0, while in metazoans, the preference is for 1-1 symmetric units. These data confirms previous ideas that the transition to animal multicellularity was marked by extensive 1-1 exon shuffling. The basal metazoan Trichoplax adhaerens is a representative of this transition, evidenced by the balanced frequencies of 0-0 and 1-1 symmetric regions. The signal of intron flanking around the borders of protein domains corroborated previous analyses, showing that non metazoans have higher frequencies of 0-0 domains and metazoans have higher frequencies of 1-1 domains. A hierarchical clustering of domains flanked by introns was built, allowing us to identify domains or groups of domains with evidence of expansions during specific periods, such as in vertebrates. Finally, genes involved in exon shuffling events were analyzed regarding the Gene Ontology enriched terms. The results indicated that this mechanism significantly contributed to the creation of genes related with a large diversity of terms, some of them are directly involved with features of metazoans and vertebrates, such as extracellular matrix, cell adhesion, blood coagulation and immune and nervous system processes
6

História evolutiva de exon shuffling em eucariotos / Evolutionary history of exon shuffling in eukaryotes

Gustavo Starvaggi França 11 February 2010 (has links)
Exon shuffling foi primeiramente proposto por Walter Gilbert em 1978 como um mecanismo em que exons de diferentes genes podem ser combinados, levando à formação de novos genes. O mecanismo de exon shuffling é favorecido por recombinações intrônicas e está correlacionado com a simetria de exons. Evidências deste mecanismo provém de análises de combinações de fases de introns, correlações entre bordas de exons e de domínios protéicos e da recorrência de domínios em diversas proteínas. Dessa forma, a evolução de proteínas formadas por exon shuffling pode ser inferida considerando a organização exon-intron dos genes, o padrão de combinações de fases de introns e a organização de domínios nas proteínas. Neste sentido, regiões protéicas que possivelmente foram originadas por eventos de exon shuffling foram identificadas através de análises em larga escala em diferentes espécies eucarióticas. A estratégia foi baseada no alinhamento entre todas as proteínas anotadas de uma determinada espécie e a verificação da presença de introns e suas respectivas fases em torno das regiões alinhadas. Nós verificamos que eventos de exon shuffling em eucariotos antigos, de origem anterior aos Metazoa, são predominantemente simétricos 0-0, enquanto nos metazoários a predominância é de unidades simétricas 1-1. Esses dados confirmam idéias anteriores de que a transição para a multicelularidade animal foi marcada pelo embaralhamento extensivo de exons e domínios 1-1. O metazoário basal Trichoplax adhaerens pode ser considerado um representante desta transição, evidenciada pelas freqüências balanceadas de regiões simétricas 0-0 e 1-1. O sinal de flanqueamento por introns em torno das bordas de domínios protéicos confirmou os resultados obtidos através dos alinhamentos, com a prevalência de domínios 0-0 em não metazoários e 1-1 em metazaoários. Um agrupamento hierárquico de domínios flanqueados por introns foi construído, permitindo identificar domínios ou grupos de domínios com evidência de expansões em períodos específicos, como nos vertebrados. Por fim, os genes envolvidos em eventos de exon shuffling foram analisados quanto ao enriquecimento em termos do Gene Ontology. Os resultados indicaram que este mecanismo contribuiu significativamente para a formação de genes relacionados com uma grande diversidade de termos, alguns dos quais envolvidos diretamente com características de metazoários e vertebrados, tais como matriz extracelular, adesão, coagulação sangüínea, processos do sistema imune e sistema nervoso / Exon shuffling was first proposed by Walter Gilbert in 1979 as a mechanism in which exons from different genes could be combined to lead the creation of new genes. The mechanism of exon shuffling is favored by intronic recombinations and it is correlated with symmetry of exons. Evidence of this mechanism come from analyses of intron phase combinations, correlations between the borders of exons and domains and domain recurrence in several proteins. Taking this into account, the evolution of proteins formed by exon shuffling can be inferred regarding the exonintron organization of the genes, the pattern of intron phase combinations and the protein domain organization. In this sense, protein regions that were probably arose by exon shuffling events were identified through a large scale analysis in several eukaryotic species. The strategy was based on alignments between all annotated proteins from a given species. Then, the aligned regions were verified in respect with intron phase combinations surrounding them. We have found that exon shuffling events in early eukaryotes are preferentially symmetric of phase 0, while in metazoans, the preference is for 1-1 symmetric units. These data confirms previous ideas that the transition to animal multicellularity was marked by extensive 1-1 exon shuffling. The basal metazoan Trichoplax adhaerens is a representative of this transition, evidenced by the balanced frequencies of 0-0 and 1-1 symmetric regions. The signal of intron flanking around the borders of protein domains corroborated previous analyses, showing that non metazoans have higher frequencies of 0-0 domains and metazoans have higher frequencies of 1-1 domains. A hierarchical clustering of domains flanked by introns was built, allowing us to identify domains or groups of domains with evidence of expansions during specific periods, such as in vertebrates. Finally, genes involved in exon shuffling events were analyzed regarding the Gene Ontology enriched terms. The results indicated that this mechanism significantly contributed to the creation of genes related with a large diversity of terms, some of them are directly involved with features of metazoans and vertebrates, such as extracellular matrix, cell adhesion, blood coagulation and immune and nervous system processes
7

Stepwise error-prone PCR and DNA shuffling changed the pH activity range and product specificity of the cyclodextrin glucanotransferase from an alkaliphilic Bacillus sp.

Melzer, Susanne, Sonnendecker, Christian, Föllner, Christina, Zimmermann, Wolfgang 29 June 2015 (has links) (PDF)
Cyclodextrin glucanotransferase (EC 2.4.1.19) from the alkaliphilic Bacillus sp. G-825-6 converts starch mainly to c-cyclodextrin (CD8). A combination of error-prone PCR and DNA shuffling was used to obtain variants of this enzyme with higher product specificity for CD8 and a broad pH activity range. The variant S54 with seven amino acid substitutions showed a 1.2-fold increase in CD8-synthesizing activity and the product ratio of CD7:CD8 was shifted to 1:7 compared to 1:3 of the wild-type enzyme. Nine amino acid substitutions of the cyclodextrin glucanotransferase were performed to generate the variant S35 active in a pH range 4.0–10.0. Compared to the wild-type enzyme which is inactive below pH 6.0, S35 retained 70% of its CD8-synthesizing activity at pH 4.0.
8

SimAffling um ambiente computacional para suporte e simulação do processo de DNA shuffling

Cheung, Luciana Montera 06 November 2008 (has links)
Made available in DSpace on 2016-06-02T19:02:39Z (GMT). No. of bitstreams: 1 2372.pdf: 3456814 bytes, checksum: 7894f1e8062bb948621e2d222d01e3b0 (MD5) Previous issue date: 2008-11-06 / Financiadora de Estudos e Projetos / The Molecular Evolution of the living organisms is a slow process that occurs over the years producing mutations and recombinations at the genetic material, i.e. at the DNA. The mutations can occur as nucleotide remotion, insertion and/or substitution at the DNA chain. The Directed Molecular Evolution is an in vitro process that tries to improve biological functions of specific molecules producing mutations at the molecule s genetic material, mimicking the natural process of evolution. Many technics that simulate in vitro molecular evolution, among them the DNA shuffling, have been used aiming to improve specific properties of a variety of commercially important products as pharmaceutical proteins, vaccines and enzymes used in industries. The original DNA shuffling methodology can be sumarized by the following steps: 1) selection of the parental sequences; 2) random fragmentation of the parental sequences by an enzyme; 3) repeated cycles of PCR (Polymerase Chain Reaction), in order to reassemble the DNA fragments produced in the previous step; 4) PCR amplification of the reassembled sequences obtained in step 3). The DNA shuffling technic success can be measured by the number of recombinat molecules found at the DNA shuffling library obtained, since these recombinant molecules potentially have improved functionalities in relation to their parent since their sequence may accumulate beneficial mutations originated from distinct parent sequences. Nowadays some few models can be found in the literature whose purpose is to suggest optimization to this process aiming the increase of the genetic diversity of the DNA shuffling library obtained. This research work presents a comparative study of four models used to predict/estimate the DNA shuffling results. In addition a computational tool for simulating the DNA shuffling proccess is proposed and implemented in an environment where other functionalities related to the analyses of the parental sequences and the resulting sequences from the DNA shuffling library is also implemented. / A Evolução Molecular dos organismos vivos é um processo lento que ocorre ao longo dos anos e diz respeito às mutações e recombinações sofridas por um determinado organismo em seu material genético, ou seja, em seu DNA. As mutações ocorrem na forma de remoções, inserções e/ou substituições de nucleotídeos ao logo da cadeia de DNA. A Evolução Molecular Direta é um processo laboratorial, ou seja, in vitro, que visa melhorar funções biológicas específicas de moléculas por meio de mutações/recombinações em seu material genético, imitando o processo natural de evolução. Diversas técnicas que simulam a evolução molecular em laboratório, entre elas a técnica de DNA shuffling, têm sido amplamente utilizadas na tentativa de melhorar determinadas propriedades de uma variedade de produtos comercialmente importantes como vacinas, enzimas industriais e substâncias de interesse famacológico. A metodologia original de DNA shuffling pode ser sumarizada pelas seguintes etapas: 1) seleção dos genes de interesse, dito parentais; 2) fragmentação enzimática dos genes; 3) ciclos de PCR (Polymerase Chain Reaction), para que ocorra a remontagem dos fragmentos; 4) amplificação das seqüências remontadas cujo tamanho é igual a dos parentais. O sucesso ou não da técnica de DNA shuffling pode ser medido pelo número de moléculas recombinantes encontradas na biblioteca de DNA shuffling obtida, uma vez que estas podem apresentar melhorias funcionais em relação aos parentais pelo fato de, possivelmente, acumularem em sua seqüência mutações benéficas presentes em parentais distintos. Atualmente podem ser encontradas na literatura algumas poucas modelagens computacionais capazes de sugerir otimizações para o processo, com vistas em aumentar a diversidade genética da biblioteca resultante. O presente trabalho apresenta um estudo comparativo de quatros modelos para predição/estimativa de resultados de experimentos de DNA shuffling encontrados na literatura bem como a proposta e implementação de uma ferramenta computacional de simulação para o processo de DNA shuffling. A ferramenta de simulação foi implementada em um ambiente que disponibiliza outras funcionalidades referentes à análise das seqüências a serem submetidas ao shuffling bem como ferramentas para análise das seqüências resultantes do processo.
9

Stepwise error-prone PCR and DNA shuffling changed the pH activity range and product specificity of the cyclodextrin glucanotransferase from an alkaliphilic Bacillus sp.: Stepwise error-prone PCR and DNA shuffling changed the pH activityrange and product specificity of the cyclodextrin glucanotransferasefrom an alkaliphilic Bacillus sp.

Melzer, Susanne, Sonnendecker, Christian, Föllner, Christina, Zimmermann, Wolfgang January 2015 (has links)
Cyclodextrin glucanotransferase (EC 2.4.1.19) from the alkaliphilic Bacillus sp. G-825-6 converts starch mainly to c-cyclodextrin (CD8). A combination of error-prone PCR and DNA shuffling was used to obtain variants of this enzyme with higher product specificity for CD8 and a broad pH activity range. The variant S54 with seven amino acid substitutions showed a 1.2-fold increase in CD8-synthesizing activity and the product ratio of CD7:CD8 was shifted to 1:7 compared to 1:3 of the wild-type enzyme. Nine amino acid substitutions of the cyclodextrin glucanotransferase were performed to generate the variant S35 active in a pH range 4.0–10.0. Compared to the wild-type enzyme which is inactive below pH 6.0, S35 retained 70% of its CD8-synthesizing activity at pH 4.0.
10

Directed Evolution of Glutathione Transferases Guided by Multivariate Data Analysis

Kurtovic, Sanela January 2008 (has links)
<p>Evolution of enzymes with novel functional properties has gained much attention in recent years. Naturally evolved enzymes are adapted to work in living cells under physiological conditions, circumstances that are not always available for industrial processes calling for novel and better catalysts. Furthermore, altering enzyme function also affords insight into how enzymes work and how natural evolution operates. </p><p>Previous investigations have explored catalytic properties in the directed evolution of mutant libraries with high sequence variation. Before this study was initiated, functional analysis of mutant libraries was, to a large extent, restricted to uni- or bivariate methods. Consequently, there was a need to apply multivariate data analysis (MVA) techniques in this context. Directed evolution was approached by DNA shuffling of glutathione transferases (GSTs) in this thesis. GSTs are multifarious enzymes that have detoxication of both exo- and endogenous compounds as their primary function. They catalyze the nucleophilic attack by the tripeptide glutathione on many different electrophilic substrates. </p><p>Several multivariate analysis tools, <i>e.g.</i> principal component (PC), hierarchical cluster, and K-means cluster analyses, were applied to large mutant libraries assayed with a battery of GST substrates. By this approach, evolvable units (quasi-species) fit for further evolution were identified. It was clear that different substrates undergoing different kinds of chemical transformation can group together in a multi-dimensional substrate-activity space, thus being responsible for a certain quasi-species cluster. Furthermore, the importance of the chemical environment, or substrate matrix, in enzyme evolution was recognized. Diverging substrate selectivity profiles among homologous enzymes acting on substrates performing the same kind of chemistry were identified by MVA. Important structure-function activity relationships with the prodrug azathioprine were elucidated by segment analysis of a shuffled GST mutant library. Together, these results illustrate important methods applied to molecular enzyme evolution.</p>

Page generated in 0.076 seconds