• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 411
  • 361
  • 151
  • 45
  • 41
  • 33
  • 28
  • 26
  • 16
  • 15
  • 14
  • 13
  • 12
  • 11
  • 10
  • Tagged with
  • 1305
  • 184
  • 131
  • 118
  • 100
  • 100
  • 99
  • 87
  • 80
  • 75
  • 71
  • 69
  • 62
  • 62
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Plasma assisted low temperature semiconductor wafer bonding

Pasquariello, Donato January 2001 (has links)
Direct semiconductor wafer bonding has emerged as a technology to meet the demand foradditional flexibility in materials integration. The applications are found in microelectronics, optoelectronics and micromechanics. For instance, wafer bonding is used to produce silicon-on-insulator (SOI) wafers. Wafer bonding is also interesting to use for combining dissimilar semiconductors, such as Si and InP, with different dictated optical, electronic and mechanicalproperties. This enables a completely new freedom in the design of components and systems, e.g. for high performance optoelectronic integrated circuits (OEIC). Although wafer bonding has proved to be a useful and versatile tool, the high temperature annealing that is needed to achieve reliable properties sometimes hampers its applicability. Therefore, low temperature wafer bonding procedures may further qualify this technology. In the present thesis, low temperature wafer bonding procedures using oxygen plasma surface activation have been studied. A specially designed fixture was adopted enabling in situ oxygen plasma wafer bonding. Oxygen plasma surface activation was seen to indeed yield high Si-Si bonding-strength at low temperatures. Here, the optimisation of the plasma parameters was shown to be the key to improved results. Furthermore, dependence of wafer bonded Si p-n junctions on the annealing temperature was investigated. InP-to-Si wafer bonding is also presented within this thesis. High temperature annealing was seen to induce severe material degradation. However, using oxygen plasma assisted wafer bonding reliable InP-to-Si integration was achieved already at low temperature, thereby circumventing the problems associated with the lattice and thermal mismatch that exist between these materials. As a result, low temperature InP-based epitaxial-layer transferring to Si could be presented. Finally, high-quality SiO2 insulator on InP and Si was realised at low temperatures. It is concluded that low temperature oxygen plasma assisted wafer bonding is an interesting approach to integrate dissimilar materials, for a wide range of applications.
442

Crystallisation Processing of Al-base Alloys

Fjellstedt, Carl Jonas January 2001 (has links)
No description available.
443

Processing of Nanostructured WC-Co Powders and Sintered Steels

Zhang, Zongyin January 2003 (has links)
Processing of nanostructured WC-Co and W-Co powders,modelling of Fe-Mn-Si alloy, swelling of Fe-Cu alloy, andmechanical properties and sintering of Fe-Mn-Si steels havebeen studied in the present thesis. W-Co precursors made by chemical synthesis were used toproduce nanostructured WCCo and W-Co powders by calcination,reduction and carburization. The phase constituents in thecalcined powders depend on temperature and atmospheres. Cobaltcan accelerate the reduction rate of the W-Co precursors as acatalyst, and cobalt influences the formation of intermediatephases during the reduction of the precursors. The ratio of carbon monoxide to carbon dioxide controlscarburization process, gives different intermediate phases andcarburization rates. There exist several intermediate phases: W6Co6C, W3Co3C, W2C due to varying carbon monoxide content in thecarburization gases. Nanostructured WC-Co powders with aparticle size of 20-50 nm have been obtained. The effect of silicon content on the particle sizedistribution of milled Fe-Mn-Si master alloy powders is muchmore significant than that of manganese content. A finer finalparticle size can be obtained in the alloy powders with highersilicon compositions. Long time milling results in theagglomeration of small particles. The grinding process can bedescribed using classic batch grinding equation based on thepopulation balance model. A swelling model for Fe-Cu alloyssintered at the temperatures above the melting point of copperhas been established based on the penetration mechanism. In themodel, the particle coordination number and heating rate wereused to express the porosity and the thickness of the diffusionlayers between iron and copper particles respectively. The effects of sintering temperature and time on theproperties of sintered steels have been studied. Fe-Mn-Simaster alloys made by cast-milling, atomizing, and acombination of atomization and milling have been covered. Themilled, and atomizationmilled alloy steels showed goodmechanical properties with small dimensional change. Transientliquid phase of the Fe-Mn-Si alloys accelerates densification,and offer fast diffusion of alloying elements. The addition ofa small amount of Fe-Mn-Si master alloy to Astaloy 85Mo powdercan lead to high strength with zero dimensional change. <b>Key words:</b>Processing; Modelling; Nanostructured powder;WC-Co; W-Co; Calcination; Reduction; Carburization; Particlesize; Sintered steel; Fe-Cu alloy; Swelling; Fe-Mn-Si masteralloy; Mechanical properties; Sintering parameters.
444

Growth and Characterization of Strain-engineered Si/SiGe Heterostructures Prepared by Molecular Beam Epitaxy

Zhao, Ming January 2008 (has links)
The strain introduced by lattice mismatch is a built-in characteristic in Si/SiGe heterostructures, which has significant influences on various material properties. Proper design and precise control of strain within Si/SiGe heterostructures, i.e. the so-called “strain engineering”, have become a very important way not only for substantial performance enhancement of conventional microelectronic devices, but also to allow novel device concepts to be integrated with Si chips for new functions, e.g. Si-based optoelectronics. This thesis thus describes studies on two subjects of such strain-engineered Si/SiGe heterostructures grown by molecular beam epitaxy (MBE). The first one focuses on the growth and characterizations of delicately strain-symmetrized Si/SiGe multi-quantum-well/superlattice structures on fully relaxed SiGe virtual substrates for light emission in the THz frequency range. The second one investigates the strain relaxation mechanism of thin SiGe layers during MBE growth and post-growth processes in non-conventional conditions. Two types of THz emitters, based on different quantum cascade (QC) intersubband transition schemes, were studied. The QC emitters using the diagonal transition between two adjacent wells were grown with Si/Si0.7Ge0.3 superlattices up to 100 periods. It was shown that nearly perfect strain symmetry in the superlattice with a high material quality was obtained. The layer parameters were precisely controlled with deviations of ≤ 2 Å in layer thickness and ≤ 1.5 at. % in Ge composition from the designed values. The fabricated emitter devices exhibited a dominating emission peak at ~13 meV (~3 THz), which was consistent with the design. An attempt to produce the first QC THz emitter based on the bound-to-continuum transition was made. The structures with a complicated design of 20 periods of active units were extremely challenging for the growth. Each unit contained 16 Si/Si0.724Ge0.276 superlattice layers, in which the thinnest one was only 8 Å. The growth parameters were carefully studied, and several samples with different boron δ-doping concentrations were grown at optimized conditions. Extensive material characterizations revealed a high crystalline quality of the grown structures with an excellent growth control, while the heavy δ-doping may introduce layer undulations as a result of the non-uniformity in the strain field. Moreover, carrier lifetime dynamics, which is crucial for the THz QC structure design, was also investigated. Strain-symmetrized Si/SiGe multi-quantum-well structures, designed for probing the carrier lifetime of intersubband transitions inside a well between heavy hole 1 (HH1) and light hole 1 (LH1) states with transition energies below the optical phonon energy, were grown on SiGe virtual substrates. The lifetime of the LH1 excited state was determined directly with pump-probe spectroscopy. The measurements indicated an increase of lifetime by a factor of ~2 due to the increasingly unconfined LH1 state, which agreed very well with the theory. It also showed a very long lifetime of several hundred picoseconds for the holes excited out of the well to transit back to the well through a diagonal process. Strained SiGe grown on Si (110) substrates has promising potentials for high-speed microelectronics devices due to the enhanced carrier mobility. Strain relaxation of SiGe/Si(110) subjected to different annealing treatments was studied by X-ray reciprocal space mapping. The in-plane lattice mismatch was found to be asymmetric with the major strain relaxation observed in the lateral [001] direction. It was concluded that this was associated to the formation and propagation of conventional a/2&lt;110&gt; dislocations oriented along [110]. This was different from the relaxation observed during growth, which was mainly along in-plane [110]. A novel MBE growth process to fabricate thin strain-relaxed Si0.6Ge0.4 virtual substrates involving low-temperature (LT) buffer layers was investigated. At a certain LT-buffer growth temperature, a dramatic increase in the strain relaxation accompanied with a decrease of surface roughness was observed in the top SiGe, together with a cross-hatch/cross-hatch-free transition in the surface morphology. It was explained by the association with a certain onset stage of the ordered/disordered transition during the growth of the LT-SiGe buffer. / Kisel(Si)-baserad mikroelektronik har utvecklats under en femtioårsperiod till att bli basen för vår nuvarande informationsteknologi. Förutom att integrera fler och mindre komponenter på varje kisel-chip så utvecklas metoder att modifiera och förbättra materialegenskaperna för att förbättra prestanda ytterligare. Ett sätt att göra detta är att kombinera kisel med germanium (Ge) bl.a. för att skapa kvantstrukturer av nanometer-storlek. Eftersom Ge-atomerna är större än Si-atomerna kan man skapa en töjning i materialet vilket kan förbättra egenskaperna, ex.vis hur snabbt laddningarna (elektronerna) rör sig i materialet. Genom att variera Gekoncentrationen i tunna skikt kan man skapa skikt som är antingen komprimerade eller expanderade och därmed ger möjlighet att göra strukturer för tillverkning av nya typer av komponenter för mikroelektronik eller optoelektronik. I detta avhandlingsarbete har Si/SiGe nanostrukturer tillverkats med molekylstråle-epitaxi-teknik (molecular beam epitaxy, MBE). Med denna teknik byggs materialet upp på ett substrat, atomlager för atomlager, med mycket god kontroll på sammansättningen av varje skikt. Samtidigt kan töjningen av materialet designas så att inga defekter skapas alternativt många defekter genereras på ett kontrollerat sätt. I denna avhandling beskrivs detaljerade studier av hur töjda i/SiGe-strukturer kan tillverkas och ge nya potentiella tillämpningar ex.vis som källa för infraröd strålning. Studierna av de olika töjda skikten har framför allt gjorts med avancerade röntgendiffraktionsmätningar och transmissionselektronmikroskopi.
445

Vers l'entreprise centrée "connaissance" ou les conditions d'efficacité de ces nouvelles formes organisationnelles

Dudezert, Aurélie 23 October 2009 (has links) (PDF)
Mes travaux de recherche s'inscrivent en Management des Systèmes d'Information et portent sur la Gestion des Connaissances (GC) autrement appelée Knowledge Management (KM). L'étude de ce phénomène dans les entreprises m'a conduit à développer un projet de recherche appliquée pour étudier la transformation des entreprises gérant les connaissances et expérimenter des dispositifs pour accompagner cette transformation. La recherche met en évidence que la Gestion des Connaissances conduit à une mutation organisationnelle des entreprises et que les technologies de l'information dites 2.0 peuvent jouer un rôle structurant dans cette transformation.
446

Molecular Dynamics Study of Novel Cryoprotectants and of CO2 Capture by sI Clathrate Hydrates

Nohra, Michael 17 July 2012 (has links)
The first project in this work used classical molecular dynamics to study the ice recrystallization inhibition potential of a series of carbohydrates and alcochols, using the hydration index, partial molar volumes and isothermal compressibilities as parameters for measuring their cryogenic efficacy. Unfortunately, after 8 months of testing, this work demonstrates that the accuracy and precision of the density extracted from simulations is not sufficient in providing accurate partial molar volumes. As a result, this work clearly demonstrates that current classical molecular dynamics technology cannot probe the volumetric properties of interest with sufficient accuracy to aid in the research and development of novel cryoprotectants.The second project in this work used molecular dynamics simulations to evaluate the Gibbs free energy change of substituting CO2 in sI clathrate hydrates by N2,CH4, SO2 and H2S flue gas impurities under conditions proposed for CO2 capture (273 K, 10 bar). Our results demonstrate that CO2 substitutions by N2 in the small sI cages were thermodynamically favored. This substitution is problematic in terms of efficient CO2 capture, since the small cages make up 25% of the sI clathrate cages, therefore a significant amount of energy could be spent on removing N2 from the flue gas rather than CO2. The thermodynamics of CO2 substitution by CH4, SO2 and H2S in sI clathrate hydrates was also examined. The substitution of CO2 by these gases in both the small and large cages were determined to be favorable. This suggests that these gases may also disrupt the CO2 capture by sI clathrate hydrates if they are present in large concentrations in the combustion flue stream. Similar substitution thermodynamics at 200 K and 10 bar were also studied. With one exception, we found that the substitution free energies do not significantly change and do not alter the sign of thermodynamics. Thus, using a lower capture temperature does not significantly change the substitution free energies and their implications for CO2 capture by sI clathrate hydrates.
447

The Influence of Thermal Barrier Coating Surface Roughness on Spark Ignition Engine Performance and Emissions

Memme, Silvio 21 March 2012 (has links)
The effects on heat transfer of piston crown surface finish and use of a metal based thermal barrier coating (TBC) on the piston crown were studied in an SI engine. Measured engine parameters such as power, fuel consumption, emissions and cylinder pressure were used to identify the effects of the coating and its surface finish. Two piston coatings were tested: a baseline copper coating and a metal TBC. Reducing surface roughness of both coatings increased in-cylinder temperature and pressure as a result of reduced heat transfer through the piston crown. These increases resulted in small improvements in both power and fuel consumption, while also having measurable effect on emissions. Oxides of nitrogen emissions were increased while total hydrocarbon emissions were decreased. Improvements attributed to the TBC were found to be small, but statistically significant. At an equivalent surface finish, the TBC performed better than the baseline copper finish.
448

Large Signal Physical Simulations of Si LD-MOS transistor for RF application

Syed, Asad Abbas January 2004 (has links)
The development of computer aided design tools for devices and circuits has increased the interest for accurate transistor modeling in microwave applications. In the increasingly expanding wireless communication market, there is a huge demand for high performance RF power devices. The silicon LD- MOSFET transistor is dueto its high power performance is today widely used in systems such as mobile base stations, private branch exchanges (PBX), and local area networks (LAN) utilizing the bands between 0.9 to 2.5 GHz. In this research we simulated LD-MOSFET transistor characteristics of the structure provided by Infineon technology at Kista, Stockholm. The maximum drain current obtained in the simulation was 400 mA at a gate voltage of 8 V. This value is somewhat higher than the measured one. This difference can be attributed to the parasitic effects since no parasitic effects were included in the simulations in the beginning. The only parasitic effect studied was by placing the source contact at the bottom of the substrate according to real commercial device. The matching between simulated and measured results were improved and maximum drain current was reduced to 300 mA/mm which was 30% higher than the measured drain current The large signal RF simulations were performed in time-domain in our novel technique developed at LiU. This technique utilizes a very simple amplifier circuit without any passive components. Only DC bias and RF signals are applied to the gate and drain terminals, with the same fundamental frequency but with 180o phase difference. The RF signal at the drain acting as a short at higher harmonics. These signals thus also acted as an active match to the transistor. Large signal RF simulations were performed at 1, 2 and 3 GHz respectively. The maximum of drain current signal was observed at the maximum of drain voltage signal indicating the normal behavior of the transistor. At 1 GHz the output power was 1.25 W/mm with 63% of drain efficiency and 23.7 dB of gain. The out pout power was decreased to 1.15 W/mm and 1.1 W/mm at 2 and 3 GHz respectively at the same time the efficiency and gain was also decreased to 57% and 19 dB at 2 GHz and 51% and 15 dB at 3GHz respectively.
449

The Influence of Thermal Barrier Coating Surface Roughness on Spark Ignition Engine Performance and Emissions

Memme, Silvio 21 March 2012 (has links)
The effects on heat transfer of piston crown surface finish and use of a metal based thermal barrier coating (TBC) on the piston crown were studied in an SI engine. Measured engine parameters such as power, fuel consumption, emissions and cylinder pressure were used to identify the effects of the coating and its surface finish. Two piston coatings were tested: a baseline copper coating and a metal TBC. Reducing surface roughness of both coatings increased in-cylinder temperature and pressure as a result of reduced heat transfer through the piston crown. These increases resulted in small improvements in both power and fuel consumption, while also having measurable effect on emissions. Oxides of nitrogen emissions were increased while total hydrocarbon emissions were decreased. Improvements attributed to the TBC were found to be small, but statistically significant. At an equivalent surface finish, the TBC performed better than the baseline copper finish.
450

Emission d'électrons Auger par bombardement ionique des métaux légers

Viaris de Lesegno, Patrick 08 March 1972 (has links) (PDF)
C'est en 1925 qu'Auger a mis en évidence le mode particulier de désexcitation non radiative auquel son nom est attaché. A la suite d'une excitation suffisamment énergique, un atome peut être porté dans un état excité comportant un trou sur un niveau électronique interne d'énergie E0. Au bout d'un temps assez court (de 1'ordre de 10-14s), une désexcitation se produit par transition d'un électron d'un niveau d'énergie supérieure E1 sur le niveau profond. L'énergie ainsi libérée peut provoquer 1'émission d'un photon X ou gamma d'énergie hv =E0-E1; c'est là le mode le plus fréquent de désexcitation des atomes lourds dont le rendement de fluorescence est assez élevé. Mais il peut aussi se faire qu'un second électron placé sur un niveau d'énergie E2 acquière l'énergie libérée par la désexcitation et soit ainsi éjecté de l'atome avec une énergie cinétique égale à E0-E1-E2. Ce dernier mode de désexcitation, dit non radiatif, est le plus probable pour les atomes d'éléments légers dont le rendement de fluorescence est faible. La mesure de l'énergie de l'électron éjecté permet d'identifier la nature de l'atome émetteur et constitue donc une analyse qualitative. Selon l'usage courant, nous réserverons dans ce mémoire le nom d'effet Auger au cas où le trou initial se situe sur un niveau interne dénommant auto-ionisation la désexcitation non radiative dans laquelle le trou initial se trouve sur un niveau externe. Différentes méthodes peuvent etre utilisées pour former le trou initial. Historiquement, c'est par irradiation de l'argon avec des photons X que 1'effet Auger a été mis en évidence, mais pour atteindre les niveaux les plus profonds sur les atomes lourds, il faut utiliser des rayons X très durs, voire des photons gamma. Bien entendu, lors de l'irradiation X, des photoélectrons sont émis en même temps que les électrons Auger. L'étude fine du spectre des électrons ainsi émis est à la base du procédé d'analyse superficielle développé par Siegbahn et al. et connu sous le nom d'ESCA. Le bombardement électronique permet aussi la formation de trous dans les niveaux profonds et donc l'émission d'électrons Auger. C'est ainsi que Harris a proposé et expérimenté une autre méthode d'analyse superficielle appelée "Spectroscopie Auger" et qui est l'objet, depuis quelques années, d'un développement très rapide, dans le dessein, en particulier, de rendre l'analyse quantitative. Enfin, lors du bombardement par des ions d'une énergie assez élevée sont aussi émis, (quelques kiloélectron-volts), des électrons Auger à côté de rayons X, comme résultat de la création de trous sur un niveau profond des atomes de la cible. L'effet a d'abord été mis en évidence sur les gaz, puis sur les métaux légers. Plus récemment, une technique plus raffinée a permis d'observer les électrons Auger émis par bombardement ionique des métaux de transition de la première série. Le mécanisme de la formation du trou profond par bombardement ionique a été étudié théoriquement par Joyes dans le cas d'atomes à l'intérieur d'un métal. Lors de la collision, un niveau moléculaire, issu de deux niveaux atomiques liés, voit son énergie croître jusqu'à atteindre le continuum des états libres au-dessus du niveau de Fermi. Un électron peut ainsi passer sur un état non occupé de la bande de conduction et un trou peut alors subsister sur l'un des atomes après séparation. Le temps de vie de l'état excité comportant un trou sur le niveau 2p d'un atome d'aluminium dans le métal a été calculé et comparé au temps moyen de sortie d'une particule déplacée. Il ressort du calcul que le temps de désexcitation est suffisamment long pour que la particule déplacée puisse éventuellement sortir du métal, généralement neutre, (la vitesse des électrons de conduction voisins du niveau de Fermi est en effet très supérieure à la vitesse moyenne d'éloignement des particules éjectées) en conservant le trou interne. L'effet Auger peut alors avoir lieu à l'extérieur du métal avec formation d'un ion secondaire. Bien entendu, la majeure partie des électrons Auger sont émis alors que la particule est à l'intérieur du métal. Le libre parcours moyen de ces électrons n'excédant pas quelques couches atomiques, les électrons sont ralentis avant leur sortie et participent à l'émission électronique secondaire de la cible, selon la théorie largement admise de Parilis et Kishinevskii.\ La question à laquelle nous avons essayé de donner une réponse était, entre autres, de rechercher la proportion des électrons Auger issus de désexcitations ayant eu lieu à l'extérieur du métal et qui sont les seules à produire des ions secondaires cinétiques, alors que la majeure partie des électrons Auger ont vraisemblablement pour origine des désexcitations survenues à l'intérieur du métal et au voisinage immédiat de la surface : ces désexcitations ne conduisent pas une ionisation de particule en mouvement. L'étude de la largeur des pics doit permettre de répondre à cette question puisque les électrons émis à l'extérieur du métal formeront un pic fin dont la largeur peut être calculée à partir du temps de vie de l'état excité (10-14s). La largeur de ce pic est alors égale à DE=h/2piDt=10-20J, c'est-à-dire qu'elle est de l'ordre de 1/10 d'électron-Volt. La répartition angulaire des électrons doit aussi permettre de séparer les contributions des désexcitations internes et des désexcitations externes, car les électrons émis à l'extérieur du métal doivent présenter une distribution isotrope alors que ceux qui viennent de l'intérieur doivent suivre une loi proche de la loi en cosinus. D'autre part, seuls les électrons provenant de désexcitations internes peuvent ressentir l'influence des symétries du réseau lors de l'émission Auger à partir d'un monocristal. Nous avons donc construit, par modification d'un appareil existant déjà au laboratoire, un analyseur électronique nous permettant étudier l'émission électronique secondaire sous bombardement ionique dans le plus grand domaine angulaire possible (angle d'émission et angle azimutal) et pour des énergies allant jusqu'à quelques centaines d'électron-Volts : sur les métaux légers, l'énergie des électrons Auger recueillis sous bombardement ionique varie en effet dans le domaine de 40 à 120 eV.

Page generated in 0.0269 seconds