• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 191
  • 58
  • 25
  • 20
  • 11
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 396
  • 212
  • 139
  • 46
  • 46
  • 45
  • 42
  • 41
  • 41
  • 38
  • 37
  • 36
  • 35
  • 33
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Studium mechanizmů RNAi v tabákové buněčné linii BY-2 a rostlinách lilku bramboru / Study of RNAi mechanisms in tobacco BY-2 cell line and potato plants

Tyč, Dimitrij January 2020 (has links)
Knowledge of the processes of RNA interference, the regulation of gene expression by small RNAs (sRNAs), has grown at an unprecedented rate over the last 30 years. Some of the findings were literally revolutionary, as they revealed events that overturned many long-held notions. Many phenomena have been shown to be highly conserved and common to organisms of different species, but others are specific to certain lineages or have not yet been fully explored. There is also a lack of knowledge about the interconnection of numerous pathways - for example between silencing at the transcriptional (TGS, leading to the promoter methylation) and post-transcriptional levels (PTGS, affecting mRNA stability or translation). The present work summarizes the findings of two published and two unpublished works and attempts to describe some of the less known sites of RNA interference using various plant model organisms. Research on Solanum tuberosum transgenic lines has revealed the ability of 5-azacytidine to restore the expression of transcriptionally silenced transgenes at the whole plant level. De novo regeneration from leaves of such plants can lead to re-silencing of reactivated transgenes and thus serves as a selection method to exclude lines prone to spontaneous silencing. The nature of changes in the...
292

MIRAGE DNA Transposon Silencing by C. elegans Condensin II Subunit HCP-6: A Masters Thesis

Malinkevich, Anna 22 December 2014 (has links)
Mobile genetic elements represent a large portion of the genome in many species. Posing a danger to the integrity of genetic information, silencing and structural machinery has evolved to suppress the mobility of foreign and transposable elements within the genome. Condensin proteins – which regulate chromosome structure to promote chromosome segregation – have been demonstrated to function in repetitive gene regulation and transposon silencing in several species. In model system Caenorhabditis elegans, microarray analysis studies have implicated Condensin II subunit HCP-6 in the silencing of multiple loci, including DNA transposon MIRAGE. To address the hypothesis that HCP-6 has a direct function in transcriptional gene silencing of the MIRAGE transposon, we queried MIRAGE expression and chromatin profiles in wild-type and hcp-6 mutant animals. Our evidence confirms that HCP-6 does indeed function during silencing of MIRAGE. However, we found no significant indication that HCP-6 binds to MIRAGE, nor that HCP-6 mediates MIRAGE enrichment of H3K9me3, the repressive heterochromatin mark observed at regions undergoing transcriptional silencing. We suggest that the silencing of MIRAGE, a newly evolved transposon and the only tested mobile element considerably derepressed upon loss of HCP-6, is managed by HCP-6 indirectly.
293

RNA Interference by the Numbers: Explaining Biology Through Enzymology: A Dissertation

Wee, Liang Meng 02 June 2013 (has links)
Small silencing RNAs function in almost every aspect of cellular biology. Argonaute proteins bind small RNA and execute gene silencing. The number of Argonaute paralogs range from 5 in Drosophila melanogaster , 8 in Homo sapiens to an astounding 27 in Caenorhabditis elegans. This begs several questions: Do Argonaute proteins have different small RNA repertoires? Do Argonaute proteins behave differently? And if so, how are they functionally and mechanistically distinct? To address these questions, we examined the thermodynamic, kinetic and functional properties of fly Argonaute1 (dAgo1), fly Argonaute2 (dAgo2) and mouse Argonaute2 (mAGO2). Our studies reveal that in fly, small RNA duplexes sort into Argonaute proteins based on their intrinsic structures: extensively paired siRNA duplex is preferentially sorted into dAgo2 while imperfectly paired miRNA duplex is channeled into dAgo1. The sorting of small RNA is uncoupled from its biogenesis. This is exemplified by mir-277, which is born a miRNA but its extensive duplex structure licenses its entry into dAgo2. In the Argonaute protein, the small RNA guide partitions into functional domains: anchor, seed, central, 3' supplementary and tail. Of these domains, the seed initiates binding to target. Both dAgo2 and mAGO2 (more closely related to and a surrogate for dAgo1 in our studies) bind targets at astonishing diffusion-limited rates (~107–108 M−1s−1). The dissociation kinetics between dAgo2 and mAGO2 from their targets, however, are different. For a fully paired target, dAgo2 dissociates slowly (t½ ~2 hr) but for a seed-matched target, dAgo2 dissociates rapidly (t½ ~20 s). In comparison, mAGO2 does not discriminate between either targets and demonstrates an equivalent dissociation rate (t½ ~20 min). Regardless, both dAgo2 and mAGO2 demonstrate high binding affinity to perfect targets with equilibrium dissociation constants, KD ~4–20 pM. Functionally, we also showed that dAgo1 but not dAgo2 silence a centrally bulged target. By contrast, dAgo2 cleaved and destroyed perfectly paired targets 43-fold faster than dAgo1. In target cleavage, dAgo2 can tolerate mismatches, bulged and internal loop in the target but at the expense of reduced target binding affinities and cleavage rates. Taken together, our studies indicate that small RNAs are actively sorted into different Argonaute proteins with distinct thermodynamic, kinetic and functional behaviors. Our quantitative biochemical analysis also allows us to model how Argonaute proteins find, bind and regulate their targets.
294

Dosage Compensation of Trisomy 21 and Its Implications for Hematopoietic Pathogenesis in Down Syndrome

Chiang, Jen-Chieh 06 November 2017 (has links)
Down Syndrome (DS), the most common aneuploidy seen in live-borns, is caused by trisomy for chromosome 21. DS imposes high risks for multiple health issues involving various systems of the body. The genetic complexity of trisomy 21 and natural variation between all individuals has impeded understanding of the specific cell pathologies and pathways involved. In addition, chromosomal disorders have been considered outside the hopeful progress in gene therapies for single-gene disorders. Here we test the feasibility of correcting imbalanced expression of genes across an extra chromosome by expression of a single gene, XIST, the key player in X chromosome inactivation. We targeted a large XIST transgene into one chromosome 21 in DS iPS cells, and demonstrated XIST RNA spreads and induces heterochromatin and gene silencing across that autosome in cis. By making XIST inducible, this allows direct comparison of effects of trisomy 21 expression on cell function and phenotypes. Importantly, XIST-induction during in vitro hematopoiesis normalized excess production of differentiated blood cell types (megakaryocytes and erythrocytes), known to confer high risk for myeloproliferative disorder and leukemia. In contrast, trisomy silencing enhances production of iPS and neural stem cells, consistent with DS clinical features. Further analysis revealed that trisomy 21 initially impacts the endothelial hematopoietic transition (EHT) to generate excess CD43+ progenitors, and also increases their colony forming potential. Furthermore, results provide evidence for a key role for enhanced IGF signaling, involving over-expression of non-chromosome 21 genes controlled by trisomy 21. Finally, experiments to examine trisomy effects on angiogenesis showed no effect on production of endothelial cells, but it remains unclear whether trisomic cells may differ in ability to form vessels. Collectively, this thesis demonstrates proof-of-principle for XIST-mediated “trisomy silencing”. Phenotypic improvement of hematopoietic and neural stem cells demonstrates the value for research into DS pathogenesis, but also provides a foundation of potential for future development of “chromosome therapy” for DS patients.
295

Chemical Biology Approaches for Regulating Eukaryotic Gene Expression / ケミカルバイオロジー的アプローチによる真核細胞の遺伝子発現制御法の検討

Junetha, Syed Jabarulla 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19261号 / 理博第4116号 / 新制||理||1592(附属図書館) / 32263 / 京都大学大学院理学研究科化学専攻 / (主査)教授 杉山 弘, 教授 三木 邦夫, 教授 藤井 紀子 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
296

Translační iniciační faktory proteinové rodiny 4E a jejich vliv na regulaci genové exprese / 4E translation initiation factors and their influence on regulation of gene expression

Lettrich, Patrik January 2021 (has links)
The translation represents one of the most crucial processes in the cell. That is why it is often targeted by various regulations. Its initiation phase has a particularly important role in regulatory processes. Initiation of translation usually starts by recognition and binding of canonical eukaryotic initiation factor 4E1 (eIF4E1) to the methylguanosine cap present on the 5' end of the majority of eukaryotic mRNA. The family of 4E translation initiation factors contains two more members - eIF4E2 and eIF4E3. Those two proteins can bind cap structure as well which predetermines it to function in the regulation of translation. Protein eIF4E2 is well known for being a translational repressor in development processes and it takes part in specific miRNA-dependent silencing. It was proven to be able to initiate translation in hypoxia which is consistent with its proposed role in hypoxic tumor cells. The biological roles of the protein eIF4E3 are much less understood. This thesis propounds the picture of the overall functions of all discussed translation initiation factors using cell lines with their overexpression or deletion. Experimental data confirmed the role of the eIF4E2 in the regulation of developmental processes. Cell lines with deleted eIF4E2 and eIF4E3 were characterized based on the influence...
297

Detection of Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch Disease of Cucurbits, Prevention via Seed Treatments and Disease Resistance Genes

Kiremit, Merve 02 April 2021 (has links)
Melon (Cucumis melo L.) and watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) belong to the family Cucurbitaceae. Bacterial fruit blotch (BFB) disease of cucurbits is an economically devastating plant disease that has caused an estimated loss of up to $450M on watermelon crops and $75M (worldwide) to the seed and transplant industries since 1996. Disease symptoms include water-soaked cotyledons, leaf necrosis, and internal fruit rot. Current commercial management strategies are very limited and include: seed production field sanitation, greenhouse transplant sanitation, copper-based bactericide sprays, crop rotation, disease-free healthy seeds, isolating diseased plants, and peroxyacetic acid seed treatments. The seedborne disease is usually spread by contaminated seeds, and there is a zero-tolerance policy in the seed industry for infected seeds. No nondestructive assays are commercially available to detect BFB in seeds. This research investigated several different aspects of BFB disease such as non-destructive seed detection, green tea seed treatment, candidate NB-LRR genes for disease resistance, and optimization of virus induced gene silencing for melon and watermelon crops. The potential application of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (ATR-FTIR) and high-resolution X-ray analysis methods for detection of BFB on seeds were evaluated. It was possible to detect BFB in seeds that were pistil inoculated via x-ray imaging and pericarp inoculated via ATR FT-IR. In vitro and in vivo experiments evaluated the potential of tea (Camellia sinensis) and tea polyphenols as seed treatments to sanitize seeds infected with A. citrulli. Green tea unlike black tea inhibited growth of A. citrulli because of polyphenols. Eighty one melon and forty four watermelon NB-LRR genes were reidentified, and genes that have potential resistance against A. citrulli on melon plants were screened based on host selectivity of the pathogen. Finally, the virus-induced, gene-silencing method was optimized for melon and watermelon for further analysis of potential disease resistance genes. BFB can be nondestructively identified in seeds and green tea may be an effective seed treatment with further development. Promising candidate R genes were identified that might confer stable resistance in the right genetic background. / Doctor of Philosophy / Melon and watermelon crops both belong to the gourd family. Bacterial fruit blotch (BFB) disease of cucurbits is an economically devastating plant disease that has caused an estimated loss of up to $450M on watermelon crops and $75M (worldwide) to the seed and transplant industries since 1996. Disease symptoms include water-soaked cotyledons, leaf necrosis, and internal fruit rot. Current commercial management strategies and detection methods are very limited. The seedborne disease is usually spread by contaminated seeds, and there is a zero-tolerance policy in the seed industry for infected seeds. This research investigated several different aspects of BFB disease such as non-destructive seed detection, green tea seed treatment, candidate disease resistance genes, and optimization of virus induced gene silencing methodology for melon and watermelon crops. There are currently no nondestructive assays available to detect BFB in seeds. We evaluated the potential application of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (ATR-FTIR) and high-resolution X-ray analysis methods for detection of BFB on seeds. It was possible to detect BFB inside layers of seeds that were naturally inoculated through the flowers via x-ray imaging and seedcoat inoculated via ATR FT-IR. In vitro and in vivo experiments evaluated the potential of tea and tea constituents as seed treatments to sanitize seeds infected with BFB. Green tea unlike black tea inhibited growth of BFB. Eighty one melon and forty four watermelon disease resistance genes were reidentified and genes that have potential resistance against BFB on melon plants were screened based on host selectivity of the pathogen. Finally, the virus induced gene silencing method was optimized for melon and watermelon plants for further analysis of potential disease resistance genes. BFB can be nondestructively identified in seeds and green tea may be an effective seed treatment with further development. Promising candidate resistance genes were identified that might confer stable resistance in the right genetic background.
298

Transposable element RNAi goes beyond post-transcriptional silencing: mRNA-derived small RNAs both regulate genes and initiate DNA methylation

McCue, Andrea D. 02 October 2015 (has links)
No description available.
299

Characterization of Self-Interaction of Arabidopsis thaliana Double-Stranded RNA Binding Protein 4

Singh, Jasleen 22 June 2012 (has links)
No description available.
300

Investigating the Molecular Framesworks of Phloem-Cap Fiber Development in Cotton (Gossypium hirsutum)

Kaur, Harmanpreet 12 1900 (has links)
The current study focuses on the vascular cambium and the reiterative formation of phloem fiber bundles in cotton stems. The role of the TDIF-PXY-WOX pathway was examined in regulating cambial activity and the differentiation of phloem fibers. A study was conducted to identify and characterize the cotton WOX family genes, focusing on WOX4 and WOX14, aiming to identify and analyze their phylogenetic relationships, tissue-specific expression profiles, functional roles, and metabolic consequences. Through a sequence analysis of the Gossypium hirsutum genome, 42 cotton loci were identified as WOX family members. GhWOX4 exhibited a close homology to 7 loci, while GhWOX14 displayed homology with 8 loci. Tissue-specific expression analysis revealed prominent expression patterns of GhWOX4 and GhWOX14 in cotton internodes and roots, suggesting their involvement in vascular tissue development. Functional studies utilizing VIGS (virus-induced gene silencing) demonstrated that the knockdown of GhWOX4 and GhWOX14 resulted in a significant reduction in stem diameter and bast fiber production. This result suggests that secondary phloem fiber development is regulated by GhWOX4 and GhWOX14 genes in cotton. Additionally, the metabolic profiling of VIGS plants revealed significant alterations in amino acids, organic acids, and sugars, with implications for primary metabolic pathways. These findings suggest that GhWOX4 and GhWOX14 play pivotal roles in cotton plant development, including vascular tissue growth and phloem fiber production, and metabolic regulation.

Page generated in 0.0799 seconds