• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 45
  • 9
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

BOTTOM SIMULATING REFLECTORS ON CANADA?S EAST COAST MARGIN: EVIDENCE FOR GAS HYDRATE.

Mosher, David C. 07 1900 (has links)
The presence of gas hydrates offshore of eastern Canada has long been inferred from estimated stability zone calculations, but the physical evidence is yet to be discovered. While geophysical evidence derived from seismic and borehole logging data provides indications of hydrate occurrence in a number of areas, the results are not regionally comprehensive and, in some cases, are inconsistent. In this study, the results of systematic seismic mapping along the Scotian and Newfoundland margins are documented. An extensive set of 2-D and 3-D, single and multi-channel, seismic reflection data comprising ~45,000 line-km was analyzed for possible evidence of hydrate. Bottom simulating reflectors (including one double BSR) were identified at five different sites, ranging between 300 and 600 m below the seafloor and in water depths of 1000 to 2900 m. The combined area of the five BSRs is 1720 km2, which comprises a small proportion of the theoretical stability zone area along the Scotian and Newfoundland margins (~635,000 km2). The apparent paucity of BSRs may relate to the rarity of gas hydrates on the margin or may be simply due to geophysical limitations in detecting hydrate.
32

Programa para estimativa do rendimento das culturas pela simulação da irrigação por balanço hídrico sequencial. / Software to estimate crop yield by simulating irrigation using sequential water balance.

Marco Antonio Jacomazzi 18 November 2004 (has links)
A utilização de recursos computacionais para o planejamento do uso racional da água em sistemas irrigados é cada vez mais freqüente na agricultura moderna tecnificada. Devido a constante melhoria desses recursos, torna-se, essencial a atualização dos programas desenvolvidos, específicos na área de irrigação e drenagem, incorporando as recentes tecnologias desenvolvidas neste setor. O objetivo deste trabalho foi elaborar uma ferramenta computacional de acesso simplificado, que proporcionasse ao usuário, a liberdade quanto aos critérios empregados nas áreas irrigadas. O programa desenvolvido é específico para o planejamento de sistemas irrigados. Esse programa foi desenvolvido para auxiliar na tomada de decisão sobre o nível de manejo de irrigação a ser adotado; com base numa previsão de chuvas simulada a partir de uma série histórica de dados e qual a máxima produtividade esperada da cultura para um determinado momento de irrigação. Como parâmetros de entrada o aplicativo requer dados sobre os parâmetros climáticos regionais; as características da cultura irrigada; as propriedades do solo quanto à capacidade de armazenamento de água e operação do manejo de água adotado. O aplicativo permite, a partir dos dados climáticos disponíveis, estimar a evapotrasnpiração potencial utilizando-se desde o modelo de Penman, que exige maior número de variáveis até o de Thornthwaite que se baseia apenas na temperatura. Simulando-se diferentes níveis de manejo da irrigação para a região de Piracicaba, onde o déficit hídrico não é acentuado, as simulações não apresentaram diferenças significativas, entretanto, supõem-se que os contrastes poderão ser potencializados para regiões mais áridas. Essa ferramenta apresentou-se ser bastante útil para o usuário, para as diferentes regiões climáticas no país e os dados climáticos disponíveis para cada caso. / The use of computers resources for planning the rational water use in irrigated systems is even more frequent in the modern technical agriculture. Due to the constant improvements of those resources, it is essential to update the developed software’s, specifically in the irrigation and drainage area, by incorporating the most recent technologies developed in this segment. The objective of this work was to elaborate a computation easy to handle tool, which allows freedom to act in relation to the used criteria in irrigated farming. The developed software is specific for planning of irrigated systems. It was developed to help decisions taking about the irrigation management level to be adopted; based on a rainfall forecast simulated on an historically sequence and the maximum crop yield expected for a specific irrigation moment. As input data, the software will need (i) regional climatic parameters, (ii) the characteristics of irrigated crop, (iii) soil properties related to water storage capacity and (iv) the adopted water management. Based on available data, user can choose among several methods of calculate the potential evapotranspiration, from Penman, which will need more climatic data, until Thornthwaite based on temperature data only. By running the program with data from Piracicaba region, where there is not a significant water deficit along the year, no difference was shown among the different methods used, but it is to suppose that in more arid regions the contrast among them will be more significantly. The developed tool presents to be useful for the user by being flexible regarding the different climatic regions of the country and also regarding available data set for each case.
33

Visualising Interval-Based Simulations

Pawlik, Amadeusz, Andersson, Henry January 2015 (has links)
Acumen is a language and tool for modeling and simulating cyber-physical systems. It allows the user to conduct simulations using a technique called rigorous simulation that produces results with explicit error bounds, expressed as intervals. This feature can be useful when designing and testing systems where the reliability of results or taking uncertainty into account is important. Unfortunately, analyzing these simulation results can be difficult, as Acumen supports only two ways of presenting them: raw data tables and 2D-plots. These views of the data make certain kinds of analysis cumbersome, such as understanding correlations between variables. This is especially true when the model in question is large. This project proposes a new way of visualising rigorous simulation results in Acumen. The goal of this project is to create a method for visualising intervallic values in 3D, and implement it in Acumen. To achieve that, every span of values is represented as a series of overlapping objects. This family of objects, which constitutes an under-approximation of the true simulation result, is then wrapped inside a semi-translucent box that is a conservative over-approximation of the simulation result. The resulting implementation makes for a combination of mathematical correctness (rigour), and mediation of intervals in question. It enables the user to explore the results of his rigorous simulations as conveniently as with the existing, non-rigorous simulation methods, using the 3D visualisation to simplify the study of real-life problems. To our knowledge, no existing software features visualisation of interval-based simulation results, nor is there any convention for doing this. Some ways in which the proposed solution could be improved are suggested at the end of this report
34

Modelling and simulating individual's mobility : case study of Luxembourg and its greater region / Modélisation et simulation du système de mobilité locale au Luxembourg et dans ses régions frontalières

Charif, Omar 17 December 2013 (has links)
Dans le dernier siècle, le transport et en particulier l'utilisation des voitures privées a émergé comme une des sources principales d'émission de CO2 (deuxième derrière la production d'énergie). Plusieurs villes dans le monde ont mis en place des stratégies pour faire face à ce phénomène afin de limiter les impacts environnementaux néfastes. Certaines stratégies n'ont pas pu atteindre leur objectif, voire ils ont eu des réactions négatives auprès des individus. Le but de cette thèse de doctorat consiste à proposer une méthodologie et une plateforme pour la modélisation et la simulation du système de mobilité. Cette plateforme sera ensuite utilisée pour implémenter des scénarios d'occupation de sol et de transport dans un monde virtuel pour étudier leur impact sur le comportement humain en termes de mobilité. Pour la modélisation de la dynamique des déplacements évoqués par la mobilité locale, nous proposons une méthode hybride (automates cellulaires et systèmes multi-agents) permettant de traiter des données complexes tout en les intégrant au sein de différentes échelles spatio-temporelles. / In the last century, transport and in particular the use of private cars has emerged as a major source of CO2 emissions (second behinf energy production). Several cities in the world have put in place strategies to deal with this problem and to reduce its adverse enviromental impacts. Some strategies could not achieve their objectives, and had negative reactions from individuals. The ail of this PhD thesis is to propose a methodology and a platform for modelling and simulating people mobility systems. The developed plat form is, then, used to implement land use and transportation scenarios and strategies in a virtual world to study their impact on human behavior in terms of mobility. To develop this platform, we propose a hybrid model, combining cellular automata and multi-agent systems, capable of handling the complexity of the mobility system able to present it at various spatial ans temporal scales.
35

Classification and Description of Gas Hydrate Systems in the Northwestern Gulf of Mexico

Skopec, Stuart Robert January 2021 (has links)
No description available.
36

Characterization of ATR kinase function in quiescent human keratinocytes when exposed to solar simulating UV radiation

Kadam, Hrishikesh Tryambak 16 May 2023 (has links)
No description available.
37

Separation Flow Control with Vortex Generator Jets Employed in an Aft-Loaded Low-Pressure Turbine Cascade with Simulated Upstream Wakes

Gompertz, Kyle Adler 08 September 2009 (has links)
No description available.
38

Simulation of the Inertia Friction Welding Process Using a Subscale Specimen and a Friction Stir Welder

Dansie, Ty Samual 01 April 2018 (has links)
This study develops a method to simulate a full-scale inertia friction weld with a sub-scale specimen and modifies a direct drive friction stir welder to perform the welding process. A torque meter is fabricated for the FSW machine to measure weld torque. Machine controls are modified to enable a force control during the IFW process. An equation is created to measure weld upset due to deflection of the FSW machine. Data obtained from a full-scale inertia friction weld are altered to account for the geometrical differences between the sub-scale and full-scale specimens. The IFW are simulated with the sub-scale specimen while controlling spindle RPM and matching weld power or weld RPM. The force used to perform friction welding is scaled to different values accounting for specimen size to determine the effects on output parameters including: HAZ, upset, RPM, torque, power and energy of the weld. Increasing force has positive effects to upset, torque, power and energy of the welds, while reducing the size of the HAZ.
39

SITE SELECTION FOR DOE/JIP GAS HYDRATE DRILLING IN THE NORTHERN GULF OF MEXICO

Hutchinson, Deborah R., Shelander, Dianna, Dai, Jianchun, McConnel, Dan, Shedd, William, Frye, Matthew, Ruppel, Carolyn, Boswell, Ray, Jones, Emrys, Collett, Timothy S., Rose, Kelly, Dugan, Brandon, Wood, Warren, Latham, Tom 07 1900 (has links)
In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other analyses
40

Water Simulating in Computer Graphics

Wu, Liming, Li, Kai January 2007 (has links)
Fluid simulating is one of the most difficult problems in computer graphics. On the other hand, water appears in our life very frequently. This thesis focuses on water simulating. We have two main methods to do this in the thesis: the first is wave based water simulating; Sine wave summing based and Fast Fourier Transform based methods are all belong to this part. The other one is physics based water simulating. We make it based on Navier-Stokes Equation and it is the most realistic animation of water. It can deal with the boundary and spray which other method cannot express. Then we put our emphasis on implement by the physics method using Navier-Stokes Equation.

Page generated in 0.0597 seconds