Spelling suggestions: "subject:"simultaneously localization anda mapping"" "subject:"simultaneously localization ando mapping""
51 |
Détection d’obstacles par stéréovision en environnement non structuré / Obstacles detection by stereovision in unstructured environmentsDujardin, Aymeric 03 July 2018 (has links)
Les robots et véhicules autonomes représentent le futur des modes de déplacements et de production. Les enjeux de l’avenir reposent sur la robustesse de leurs perceptions et flexibilité face aux environnements changeant et situations inattendues. Les capteurs stéréoscopiques sont des capteurs passifs qui permettent d'obtenir à la fois image et information 3D de la scène à la manière de la vision humaine. Dans ces travaux nous avons développé un système de localisation, par odométrie visuelle permettant de déterminer la position dans l'espace du capteur de façon efficace et performante en tirant partie de la carte de profondeur dense mais également associé à un système de SLAM, rendant la localisation robuste aux perturbations et aux décalages potentiels. Nous avons également développé plusieurs solutions de cartographie et interprétation d’obstacles, à la fois pour le véhicule aérien et terrestre. Ces travaux sont en partie intégrés dans des produits commerciaux. / Autonomous vehicles and robots represent the future of transportation and production industries. The challenge ahead will come from the robustness of perception and flexibility from unexpected situations and changing environments. Stereoscopic cameras are passive sensors that provide color images and depth information of the scene by correlating 2 images like the human vision. In this work, we developed a localization system, by visual odometry that can determine efficiently the position in space of the sensor by exploiting the dense depth map. It is also combined with a SLAM system that enables robust localization against disturbances and potentials drifts. Additionally, we developed a few mapping and obstacles detections solutions, both for aerial and terrestrial vehicles. These algorithms are now partly integrated into commercial products.
|
52 |
Variabilitätsmodellierung in Kartographierungs- und LokalisierungsverfahrenWerner, Sebastian January 2014 (has links)
In der heutigen Zeit spielt die Automatisierung eine immer bedeutendere Rolle, speziell im Bereich
der Robotik entwickeln sich immer neue Einsatzgebiete, in denen der Mensch durch autonome Fahrzeuge ersetzt wird. Dabei orientiert sich der Großteil der eingesetzten Roboter an Streckenmarkierungen, die in den Einsatzumgebungen installiert sind. Bei diesen Systemen gibt es jedoch einen hohen Installationsaufwand, was die Entwicklung von Robotersystemen, die sich mithilfe ihrer verbauten Sensorik orientieren, vorantreibt. Es existiert zwar eine Vielzahl an Robotern die dafür verwendet werden können. Die Entwicklung der Steuerungssoftware ist aber immer noch Teil der Forschung.
Für die Steuerung wird eine Umgebungskarte benötigt, an der sich der Roboter orientieren kann. Hierfür eignen sich besonders SLAM-Verfahren, die simultanes Lokalisieren und Kartographieren durchführen. Dabei baut der Roboter während seiner Bewegung durch den Raum mithilfe seiner Sensordaten eine Umgebungskarte auf und lokalisiert sich daran, um seine Position auf der Karte exakt zu bestimmen.
Im Laufe dieser Arbeit wurden über 30 verschiedene SLAM Implementierungen bzw. Umsetzungen gefunden die das SLAM Problem lösen. Diese sind jedoch größtenteils an spezielle Systembzw. Umgebungsvoraussetzungen angepasste eigenständige Implementierungen.
Es existiert keine öffentlich zugängliche Übersicht, die einen Vergleich aller bzw. des Großteils der Verfahren, z.B. in Bezug auf ihre Funktionsweise, Systemvoraussetzungen (Sensorik, Roboterplattform), Umgebungsvoraussetzungen (Indoor, Outdoor, ...), Genauigkeit oder Geschwindigkeit, gibt. Viele dieser SLAMs besitzen Implementierungen und Dokumentationen in denen ihre Einsatzgebiete, Testvoraussetzungen oder Weiterentwicklungen im Vergleich zu anderen SLAMVerfahren beschrieben werden, was aber bei der großen Anzahl an Veröffentlichungen das Finden eines passenden SLAM-Verfahrens nicht erleichtert.
Bei einer solchen Menge an SLAM-Verfahren und Implementierungen stellen sich aus softwaretechnologischer Sicht folgende Fragen:
1. Besteht die Möglichkeit einzelne Teile des SLAM wiederzuverwenden?
2. Besteht die Möglichkeit einzelne Teile des SLAM dynamisch auszutauschen?
Mit dieser Arbeit wird das Ziel verfolgt, diese beiden Fragen zu beantworten. Hierfür wird zu Beginn eine Übersicht über alle gefundenen SLAMs aufgebaut um diese in ihren grundlegenden Eigenschaften zu unterscheiden. Aus der Vielzahl von Verfahren werden die rasterbasierten Verfahren, welche Laserscanner bzw. Tiefenbildkamera als Sensorik verwenden, als zu untersuchende Menge ausgewählt. Diese Teilmenge an SLAM-Verfahren wird hinsichtlich ihrer nichtfunktionalen Eigenschaften genauer untersucht und versucht in Komponenten zu unterteilen, welche in mehreren verschiedenen Implementierungen wiederverwendet werden können. Anhand der extrahierten Komponenten soll ein Featurebaum aufgebaut werden, der dem Anwender einen Überblick und die Möglichkeit bereitstellt SLAM-Verfahren nach speziellen Kriterien (Systemvoraussetzungen, Umgebungen, ...) zusammenzusetzen bzw. zur Laufzeit anzupassen. Dafür müssen die verfügbaren SLAM Implementierungen und dazugehörigen Dokumentationen in Bezug auf ihre Gemeinsamkeiten und Unterschiede analysiert werden.
|
53 |
Submap Correspondences for Bathymetric SLAM Using Deep Neural Networks / Underkarta Korrespondenser för Batymetrisk SLAM med Hjälp av Djupa Neurala NätverkTan, Jiarui January 2022 (has links)
Underwater navigation is a key technology for exploring the oceans and exploiting their resources. For autonomous underwater vehicles (AUVs) to explore the marine environment efficiently and securely, underwater simultaneous localization and mapping (SLAM) systems are often indispensable due to the lack of the global positioning system (GPS). In an underwater SLAM system, an AUV maps its surroundings and estimates its own pose at the same time. The pose of the AUV can be predicted by dead reckoning, but navigation errors accumulate over time. Therefore, sensors are needed to calibrate the state of the AUV. Among various sensors, the multibeam echosounder (MBES) is one of the most popular ones for underwater SLAM since it can acquire bathymetric point clouds with depth information of the surroundings. However, there are difficulties in data association for seabeds without distinct landmarks. Previous studies have focused more on traditional computer vision methods, which have limited performance on bathymetric data. In this thesis, a novel method based on deep learning is proposed to facilitate underwater perception. We conduct two experiments on place recognition and point cloud registration using data collected during a survey. The results show that, compared with the traditional methods, the proposed neural network is able to detect loop closures and register point clouds more efficiently. This work provides a better data association solution for designing underwater SLAM systems. / Undervattensnavigering är en viktig teknik för att utforska haven och utnyttja deras resurser. För att autonoma undervattensfordon (AUV) ska kunna utforska havsmiljön effektivt och säkert är underwater simultaneous localization and mapping (SLAM) system ofta oumbärliga på grund av bristen av det globala positioneringssystemet (GPS). I ett undervattens SLAM-system kartlägger ett AUV sin omgivning och uppskattar samtidigt sin egen position. AUV:s position kan förutsägas med hjälp av dödräkning, men navigeringsfel ackumuleras med tiden. Därför behövs sensorer för att kalibrera AUV:s tillstånd. Bland olika sensorer är multibeam ekolod (MBES) en av de mest populära för undervattens-SLAM eftersom den kan samla in batymetriska punktmoln med djupinformation om omgivningen. Det finns dock svårigheter med dataassociation för havsbottnar utan tydliga landmärken. Tidigare studier har fokuserat mer på traditionella datorvisionsmetoder som har begränsad prestanda för batymetriska data. I den här avhandlingen föreslås en ny metod baserad på djup inlärning för att underlätta undervattensuppfattning. Vi genomför två experiment på punktmolnregistrering med hjälp av data som samlats in under en undersökning. Resultaten visar att jämfört med de traditionella metoderna kan det föreslagna neurala nätverket upptäcka slingförslutningar och registrera punktmoln mer effektivt. Detta arbete ger en bättre lösning för dataassociation för utformning av undervattens SLAM-system.
|
54 |
Registration and Localization of Unknown Moving Objects in Markerless Monocular SLAMBlake Austin Troutman (15305962) 18 May 2023 (has links)
<p>Simultaneous localization and mapping (SLAM) is a general device localization technique that uses realtime sensor measurements to develop a virtualization of the sensor's environment while also using this growing virtualization to determine the position and orientation of the sensor. This is useful for augmented reality (AR), in which a user looks through a head-mounted display (HMD) or viewfinder to see virtual components integrated into the real world. Visual SLAM (i.e., SLAM in which the sensor is an optical camera) is used in AR to determine the exact device/headset movement so that the virtual components can be accurately redrawn to the screen, matching the perceived motion of the world around the user as the user moves the device/headset. However, many potential AR applications may need access to more than device localization data in order to be useful; they may need to leverage environment data as well. Additionally, most SLAM solutions make the naive assumption that the environment surrounding the system is completely static (non-moving). Given these circumstances, it is clear that AR may benefit substantially from utilizing a SLAM solution that detects objects that move in the scene and ultimately provides localization data for each of these objects. This problem is known as the dynamic SLAM problem. Current attempts to address the dynamic SLAM problem often use machine learning to develop models that identify the parts of the camera image that belong to one of many classes of potentially-moving objects. The limitation with these approaches is that it is impractical to train models to identify every possible object that moves; additionally, some potentially-moving objects may be static in the scene, which these approaches often do not account for. Some other attempts to address the dynamic SLAM problem also localize the moving objects they detect, but these systems almost always rely on depth sensors or stereo camera configurations, which have significant limitations in real-world use cases. This dissertation presents a novel approach for registering and localizing unknown moving objects in the context of markerless, monocular, keyframe-based SLAM with no required prior information about object structure, appearance, or existence. This work also details a novel deep learning solution for determining SLAM map initialization suitability in structure-from-motion-based initialization approaches. This dissertation goes on to validate these approaches by implementing them in a markerless, monocular SLAM system called LUMO-SLAM, which is built from the ground up to demonstrate this approach to unknown moving object registration and localization. Results are collected for the LUMO-SLAM system, which address the accuracy of its camera localization estimates, the accuracy of its moving object localization estimates, and the consistency with which it registers moving objects in the scene. These results show that this solution to the dynamic SLAM problem, though it does not act as a practical solution for all use cases, has an ability to accurately register and localize unknown moving objects in such a way that makes it useful for some applications of AR without thwarting the system's ability to also perform accurate camera localization.</p>
|
55 |
Instance Segmentation on depth images using Swin Transformer for improved accuracy on indoor images / Instans-segmentering på bilder med djupinformation för förbättrad prestanda på inomhusbilderHagberg, Alfred, Musse, Mustaf Abdullahi January 2022 (has links)
The Simultaneous Localisation And Mapping (SLAM) problem is an open fundamental problem in autonomous mobile robotics. One of the latest most researched techniques used to enhance the SLAM methods is instance segmentation. In this thesis, we implement an instance segmentation system using Swin Transformer combined with two of the state of the art methods of instance segmentation namely Cascade Mask RCNN and Mask RCNN. Instance segmentation is a technique that simultaneously solves the problem of object detection and semantic segmentation. We show that depth information enhances the average precision (AP) by approximately 7%. We also show that the Swin Transformer backbone model can work well with depth images. Our results also show that Cascade Mask RCNN outperforms Mask RCNN. However, the results are to be considered due to the small size of the NYU-depth v2 dataset. Most of the instance segmentation researches use the COCO dataset which has a hundred times more images than the NYU-depth v2 dataset but it does not have the depth information of the image.
|
56 |
Movement Estimation with SLAM through Multimodal Sensor FusionCedervall Lamin, Jimmy January 2024 (has links)
In the field of robotics and self-navigation, Simultaneous Localization and Mapping (SLAM) is a technique crucial for estimating poses while concurrently creating a map of the environment. Robotics applications often rely on various sensors for pose estimation, including cameras, inertial measurement units (IMUs), and more. Traditional discrete SLAM, utilizing stereo camera pairs and inertial measurement units, faces challenges such as time offsets between sensors. A solution to this issue is the utilization of continuous-time models for pose estimation. This thesis delves into the exploration and implementation of a continuous-time SLAM system, investigating the advantages of multi-modal sensor fusion over discrete stereo vision models. The findings indicate that incorporating an IMU into the system enhances pose estimation, providing greater robustness and accuracy compared to relying solely on visual SLAM. Furthermore, leveraging the continuous model's derivative and smoothness allows for decent pose estimation with fewer measurements, reducing the required quantity of measurements and computational resources.
|
57 |
Visual Place Recognition in Changing Environments using Additional Data-Inherent KnowledgeSchubert, Stefan 15 November 2023 (has links)
Visual place recognition is the task of finding same places in a set of database images for a given set of query images. This becomes particularly challenging for long-term applications when the environmental condition changes between or within the database and query set, e.g., from day to night. Visual place recognition in changing environments can be used if global position data like GPS is not available or very inaccurate, or for redundancy. It is required for tasks like loop closure detection in SLAM, candidate selection for global localization, or multi-robot/multi-session mapping and map merging.
In contrast to pure image retrieval, visual place recognition can often build upon additional information and data for improvements in performance, runtime, or memory usage. This includes additional data-inherent knowledge about information that is contained in the image sets themselves because of the way they were recorded. Using data-inherent knowledge avoids the dependency on other sensors, which increases the generality of methods for an integration into many existing place recognition pipelines.
This thesis focuses on the usage of additional data-inherent knowledge. After the discussion of basics about visual place recognition, the thesis gives a systematic overview of existing data-inherent knowledge and corresponding methods. Subsequently, the thesis concentrates on a deeper consideration and exploitation of four different types of additional data-inherent knowledge. This includes 1) sequences, i.e., the database and query set are recorded as spatio-temporal sequences so that consecutive images are also adjacent in the world, 2) knowledge of whether the environmental conditions within the database and query set are constant or continuously changing, 3) intra-database similarities between the database images, and 4) intra-query similarities between the query images. Except for sequences, all types have received only little attention in the literature so far.
For the exploitation of knowledge about constant conditions within the database and query set (e.g., database: summer, query: winter), the thesis evaluates different descriptor standardization techniques. For the alternative scenario of continuous condition changes (e.g., database: sunny to rainy, query: sunny to cloudy), the thesis first investigates the qualitative and quantitative impact on the performance of image descriptors. It then proposes and evaluates four unsupervised learning methods, including our novel clustering-based descriptor standardization method K-STD and three PCA-based methods from the literature. To address the high computational effort of descriptor comparisons during place recognition, our novel method EPR for efficient place recognition is proposed. Given a query descriptor, EPR uses sequence information and intra-database similarities to identify nearly all matching descriptors in the database. For a structured combination of several sources of additional knowledge in a single graph, the thesis presents our novel graphical framework for place recognition. After the minimization of the graph's error with our proposed ICM-based optimization, the place recognition performance can be significantly improved. For an extensive experimental evaluation of all methods in this thesis and beyond, a benchmark for visual place recognition in changing environments is presented, which is composed of six datasets with thirty sequence combinations.
|
58 |
Relative Navigation of Micro Air Vehicles in GPS-Degraded EnvironmentsWheeler, David Orton 01 December 2017 (has links)
Most micro air vehicles rely heavily on reliable GPS measurements for proper estimation and control, and therefore struggle in GPS-degraded environments. When GPS is not available, the global position and heading of the vehicle is unobservable. This dissertation establishes the theoretical and practical advantages of a relative navigation framework for MAV navigation in GPS-degraded environments. This dissertation explores how the consistency, accuracy, and stability of current navigation approaches degrade during prolonged GPS dropout and in the presence of heading uncertainty. Relative navigation (RN) is presented as an alternative approach that maintains observability by working with respect to a local coordinate frame. RN is compared with several current estimation approaches in a simulation environment and in hardware experiments. While still subject to global drift, RN is shown to produce consistent state estimates and stable control. Estimating relative states requires unique modifications to current estimation approaches. This dissertation further provides a tutorial exposition of the relative multiplicative extended Kalman filter, presenting how to properly ensure observable state estimation while maintaining consistency. The filter is derived using both inertial and body-fixed state definitions and dynamics. Finally, this dissertation presents a series of prolonged flight tests, demonstrating the effectiveness of the relative navigation approach for autonomous GPS-degraded MAV navigation in varied, unknown environments. The system is shown to utilize a variety of vision sensors, work indoors and outdoors, run in real-time with onboard processing, and not require special tuning for particular sensors or environments. Despite leveraging off-the-shelf sensors and algorithms, the flight tests demonstrate stable front-end performance with low drift. The flight tests also demonstrate the onboard generation of a globally consistent, metric, and localized map by identifying and incorporating loop-closure constraints and intermittent GPS measurements. With this map, mission objectives are shown to be autonomously completed.
|
59 |
Robust Optimization for Simultaneous Localization and Mapping / Robuste Optimierung für simultane Lokalisierung und KartierungSünderhauf, Niko 25 April 2012 (has links) (PDF)
SLAM (Simultaneous Localization And Mapping) has been a very active and almost ubiquitous problem in the field of mobile and autonomous robotics for over two decades. For many years, filter-based methods have dominated the SLAM literature, but a change of paradigms could be observed recently.
Current state of the art solutions of the SLAM problem are based on efficient sparse least squares optimization techniques. However, it is commonly known that least squares methods are by default not robust against outliers. In SLAM, such outliers arise mostly from data association errors like false positive loop closures. Since the optimizers in current SLAM systems are not robust against outliers, they have to rely heavily on certain preprocessing steps to prevent or reject all data association errors. Especially false positive loop closures will lead to catastrophically wrong solutions with current solvers. The problem is commonly accepted in the literature, but no concise solution has been proposed so far.
The main focus of this work is to develop a novel formulation of the optimization-based SLAM problem that is robust against such outliers. The developed approach allows the back-end part of the SLAM system to change parts of the topological structure of the problem\'s factor graph representation during the optimization process. The back-end can thereby discard individual constraints and converge towards correct solutions even in the presence of many false positive loop closures. This largely increases the overall robustness of the SLAM system and closes a gap between the sensor-driven front-end and the back-end optimizers. The approach is evaluated on both large scale synthetic and real-world datasets.
This work furthermore shows that the developed approach is versatile and can be applied beyond SLAM, in other domains where least squares optimization problems are solved and outliers have to be expected. This is successfully demonstrated in the domain of GPS-based vehicle localization in urban areas where multipath satellite observations often impede high-precision position estimates.
|
60 |
Localisation et cartographie simultanées en environnement extérieur à partir de données issues d'un radar panoramique hyperfréquence / Simultaneous localization and mapping in extensive outdoor environments from hyper-frequency radar measurementsGérossier, Franck 05 June 2012 (has links)
Le SLAM, « Simultaneous Localisation And Mapping », représente à l'heure actuelle l'une des principales thématiques investiguées dans le domaine des robots mobiles autonomes. Il permet, à l'aide de capteurs extéroceptifs (laser, caméra, radar, etc.) et proprioceptifs (odomètre, gyromètre, etc.), de trouver l'orientation et la localisation d'un robot dans un environnement extérieur vaste, inconnu ou modifié, avec la possibilité de créer une carte au fur et à mesure des déplacements du véhicule. Les travaux de thèse décrits dans ce manuscrit s'intègrent dans ce courant de recherche. Ils visent à développer un SLAM innovant qui utilise un radar à modulation de fréquence continue « FMCW » comme capteur extéroceptif. Ce capteur est insensible aux conditions climatiques et possède une portée de détection importante. Néanmoins, c'est un capteur tournant qui, dans une utilisation mobile, va fournir des données corrompues par le déplacement du véhicule. Pour mener à bien ces travaux, nous avons proposés différentes contributions : une correction de la distorsion par l'utilisation de capteurs proprioceptifs ; le développement d'une technique de localisation et cartographie simultanées nommée RS-SLAM-FMT qui effectue un scan matching sur les observations et utilise un algorithme estimatif de type EKF-SLAM ; l'utilisation, pour la première fois en SLAM, de la mise en correspondance par Transformée de Fourier-Mellin pour réaliser l'opération de scan matching ; la création d'un outil expérimental pour déterminer la matrice de covariance associée aux observations ; des tests de robustesse de l'algorithme dans des conditions d'utilisation réelles : dans des zones avec un faible nombre de points d'intérêts, sur des parcours effectués à vitesse élevée, dans des environnements péri-urbains avec une forte densité d'objets mobiles ; la réalisation d'une application temps réel pour le test du procédé sur un véhicule d'exploration qui se déplace dans un environnement extérieur vaste. / Simultaneous Localization And Mapping (SLAM) is one of the main topics investigated in the field of autonomous mobile robots. It permits the Localization and mapping of a robot in a large outdoor environment, using exteroceptive (laser, camera, radar, etc.) and proprioceptive (odometer, gyroscope, etc.) sensors. The objective of this PhD thesis is to develop innovative SLAM that uses a radar frequency modulated continuous wave (FMCW) as an exteroceptive sensor. Microwave radar provides an alternative solution for environmental imaging and overcomes the shortcomings of laser, video and sonar sensors such as their high sensitivity to atmospheric conditions. However, data obtained with this rotating range sensor is adversely affected by the vehicle’s own movement. In order to efficiently manage the work, we propose : a correction, on-the-fly, of the rotating distortion with an algorithm that uses the proprioceptive sensors’ measurements ; development of a new technique for simultaneous localization and mapping named RS-SLAM-FMT ; for the first time in SLAM, the use of the Fourier-Mellin Transform provides an accurate and efficient way of computing the rigid transformation between consecutive scans ; creation of an experimental tool to determine the covariance matrix associated with the observations. It is based on an uncertainty analysis of a Fourier-Mellin image registration ; tests of the robustness of the SLAM algorithm in real-life conditions : in an environment containing a small number of points of interest, in real full speed driving conditions, in peri-urban environments with a high density of moving objects etc. ; creation and experiment of a real-time RS-SLAM-FMT implemented on a mobile exploration vehicle in an extensive outdoor environment.
|
Page generated in 0.1808 seconds