• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 12
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 39
  • 25
  • 21
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mechanical Characterization of Carbon Nanotubes and Nanocomposites

Jalan, Salil Kanj January 2015 (has links) (PDF)
Measurement of all the mechanical properties of carbon nanotubes is extremely difficult because of its small size. In the present work, all the five transverse isotropic properties of single wall carbon nanotubes (SWCNTs) and double wall carbon nanotubes are estimated through molecular structural mechanics for different chirality, length and assumed thickness. Armchair, zigzag & chiral SWCNTs and polychiral DWCNTs are considered for the analysis. Longitudinal and lateral Young’s modulus; longitudinal and lateral Poisson’s ratio and shear modulus are estimated for 1080 SWCNTs and 1170 polychiral DWCNTs. Effect of temperature on all the properties of SWCNT are investigated. Modal characterization of SWCNT is carried out in base fixed condition and different mode shapes viz. axial, torsion and bending mode shapes are identified based on the effective mass. Once the transverse isotropic properties of SWCNTs are estimated, these are used to estimate the transverse isotropic properties of nanocomposites embedded with SWCNT agglomerates. During the manufacturing of nanocomposite, SWCNT agglomerates are formed due to sticking of number of SWCNTs. Parametric studies are carried out to see the effect of SWCNT length on the properties of nanocomposite. Empirical formulae for all the transverse isotropic properties of SWCNT at room temperature and elevated temperature; frequency of SWCNT are derived. Empirical formulae for polychiral DWCNT transverse isotropic properties are estimated. Input for these empirical formulae are the length, chirality and assumed thickness. Empirical formulae were also derived for nanocomposite embedded with different number of SWCNTs having different chirality. The derived empirical formulae were validated with available analytical and experimental results for some sample cases.
22

"Noncovalent Complexation of Single-Wall Carbon Nanotubes with Biopolymers: Dispersion, Purification, and Protein Interactions"

DiLillo, Ana M. 24 June 2021 (has links)
No description available.
23

Single wall carbon nanotube growth from bimetallic nanoparticles : a parametric study of the synthesis up to potential application in nano-electronics. / Croissance de nanotubes de carbone monoparoi à partir de nanoparticules bimétalliques : une étude paramétrique de la synthèse jusqu'aux potentielles applications en nanoélectroniques.

Forel, Salomé 06 December 2017 (has links)
Ce manuscrit présente une étude expérimentale autour de la synthèse des nanotubes de carbone et de leurs possibles intégrations dans des dispositifs. Les remarquables propriétés électroniques et optiques des nanotubes en font un matériau de choix pour entre autres, la nanoélectronique. Néanmoins, l’intégration des nanotubes dans des dispositifs performants est encore aujourd’hui un défi. Cela repose principalement sur la difficulté d’obtenir de grandes quantités de nanotubes mono-paroi avec des propriétés uniformes, propriétés qui sont définies par la structure du nanotube (i.e. leur angle chiral et leur diamètre). Ainsi, réaliser des synthèses de nanotube de carbone avec un contrôle de leur structure représente un point clé pour le progrès dans ce domaine.Nous avons donc mis en place une nouvelle méthode de synthèse de nanotubes de carbone basée sur la chimie de coordination et le dépôt chimique en phase vapeur activé par filament chaud. Cette synthèse permet la conception de nombreux nouveaux catalyseurs bimétalliques pour la croissance des nanotubes de carbone. Comme le procédé mis en place est très générique, des études paramétriques peuvent être réalisées de manière à mieux comprendre l’influence des différents paramètres de la croissance sur la structure des nanotubes obtenue. Nous discuterons ici du rôle de la température et de la composition chimique du catalyseur. Les nanotubes obtenus sont principalement caractérisés par spectroscopie Raman et par microscopies électroniques.Afin de valider les observations obtenues par spectroscopie Raman, les nanotubes synthétisés ont aussi été intégrés dans des dispositifs de type transistor à effet de champ. Une analyse des performances des transistors en fonction des différents nanotubes utilisés dans le canal est présentée.Enfin, les nanotubes intégrés dans ces transistors ont été fonctionnalisés avec un chromophore de ruthénium. Nous avons montré que cette fonctionnalisation nous permet de moduler, grâce à une impulsion lumineuse, la conductivité du dispositif sur trois ordres de grandeur. / This manuscript presents an experimental study around the single wall carbon nanotubes (SWCNT) synthesis and their possible integration in nanodevices. The unique electronic and optical properties of carbon nanotubes make them a choice material for various applications, particularly in nano-electronics.Nevertheless, their integration in effective devices is still a challenge. This is mainly due to the difficulty to obtain large quantity of SWCNT with uniform properties, defined by their structure (i.e. chiral angle and diameter). Therefore, structure controlled growth of SWCNTs is a key point for progress in this field.Here, we established a new synthesis approach based on coordination chemistry and hot-filament chemical vapor deposition. This approach allows the design of various bimetallic catalyst nanoparticles for the SWCNT growth. As the synthesis process is generic, parametric study can be performed in order to better understand the influence of the various parameters on the structure of the as-grown SWCNTs. In particular, we will discuss the role of the growth temperature and the chemical composition of the catalyst on the final SWCNTs structure. The obtained SWCNTs are mainly characterized by Raman spectroscopy and electronic microscopy.In order to validate the observations performed by Raman measurement, the synthesized SWCNTs have been also integrated in field effect transistors (FET) devices. An analysis of the performance of the FET-device as a function of the SWCNTs used in its channel will be presented.Finally, SWCNTs integrated in these transistors have been functionalized with an inorganic chromophore of ruthenium.We demonstrate that the functionalization of the SWCNTs leads to a three order of magnitude reversible switch of the device conductivity triggered by visible light.
24

Optical emission spectroscopy of laser induced plasmas containing carbon and transitional metals.

Motaung, David Edmond. January 2008 (has links)
<p>The spectroscopic, SEM and Raman measurements on carbon nanotubes under the exact conditions of which OES analysis were made showed that at<br /> a pressure of 400 Torr and a flow rate of 200 sccm, the quality and quantity of single-walled carbon nanotubes was the highest.</p>
25

A combined experimental and theoretical approach towards the understanding of transport in one-dimensional molecular nanostructures

Grimm, Daniel 06 August 2008 (has links) (PDF)
This thesis comprises detailed experimental and theoretical investigations of the transport properties of one-dimensional nanostructures. Most of the work is dedicated to the exploration of the fascinating effects occurring in single wall carbon nanotubes (SWCNT). These particular nanostructures gained an overwhelming interest in the past two decades due to its outstanding electronic and mechanical features. We have investigated the properties of a novel family of carbon nanostructures, named here as Y-shaped rings. The studies show that they present very interesting quantum interference effects. A high structural stability under tensile strain and elevated temperatures is observed. Within the semi-classical potential adopted, the critical strain values of structure rupture lie in the same range of their pristine SWCNT counterparts. This is directly verified by the first observations of these ring-like structures in a transmission electron microscopy. A merging process of asymmetric into symmetric rings is investigated in-situ under electron beam irradiation at high temperatures. The electronic properties of these systems are theoretically studied using Monte Carlo simulations and environment dependent tight-binding calculations. From our results, we address the possibility of double-slit like interference processes of counter-propagating electron waves in the ring-like structures. The nature of well defined, sharp peaks in the density of states are determined as the discrete eigenenergies of the central loop part. Furthermore, the formation and dispersion of standing waves inside the ring is shown to originate from the quantum-dot like confinement of each branch between the leads. The obtained dispersion relation is shown to be the same occurring in purely one-dimensional quantum dots of similar geometries. Furthermore, Fabry-Perot-like interferences are observed. We established at the IFW a bottom-up processing route to fabricate nanotube based electronic devices. The SWCNTs are grown by chemical vapor deposition and we present a detailed study of the different approaches to obtain individual nanotubes suitable for a successful integration into electronic devices. Wet-chemistry and ultra-thin films as well as ferritin were employed as catalyst particles in the growth of SWCNT samples. By adjusting the optimized process parameters, we can control the obtained yield from thick nanotube forests down to just a couple of free-standing individual SWCNTs. The nanotubes are localized, contacted by standard e-beam lithography and characterized at ambient- as well as liquid helium temperatures. We usually obtain quite transparent contacts and the devices exhibit metallic or a mixed metallic/semiconducting behavior. The well-known memory effect upon gate voltage sweeping as well as single electron tunneling in the Coulomb blockade regime are addressed.
26

Synthesis and characterisation of molecular nanostructures / Synthese und Charakterisierung von molekularen Nanostrukturen

Borowiak-Palen, Ewa 16 July 2004 (has links) (PDF)
In this thesis, bulk and local scale spectroscopic and microscopic tools have been applied to investigate the purified raw material of SWCNT and synthesized MWBNNT, BN-nanocapsules, B-doped SWCNT and SiC nanostructures. Using bulk scale sensitive techniques, including optical absorption spectroscopy, Raman spectroscopy, high-resolution electron energy-loss spectroscopy, the average response of the whole sample is obtained. On the other hand, on a local scale transmission and scanning electron microscopy as well as TEM-electron energy-loss spectroscopy provide information on single tubes or other nanostructures. First, diverse chemical and oxidation methods for the purification of as-produced SWCNT were presented. Purified samples were investigated using TEM and OAS. The analysis of the optical absorption spectra in the UV-Vis energy range revealed that some of the chemical treatments are harmful to nanotubes. In contrast to the chemical treatments an oxygen burning procedure was used on the raw material in high vacuum and a temperature range 450?650oC. The purification processes of SWCNT by HNO3 and oxygen burning procedures resulted in SWCNT comprised of selected diameters and a reduced diameter distribution. Both HNO3 and oxygen burning treatments can be used to selectively remove SWCNT with smaller diameters from the samples. In addition, an adapted substitution reaction was used for the synthesis of multiwall boron nitride nanotubes. It was shown that the IR-response of MWBNNT can be used as a fingerprint to analyse MWBNNT. As in h-BN for the analysis one has to be aware of the sample texture and the LO-TO splitting of the IR-active modes. TEM images and B1s and N 1s excitation edges of the grown material reveal the presence of multiwall BN nanotubes with an inner diameter of 3.1 nm and with a larger interplanar distance than in h-BN. The electronic properties of the multiwall BN nanotubes as derived from the q-dependent dielectric function e(w,q) are dominated by the band structure of the hexagonal-like BN sheets, as revealed by the large degree of momentum dispersion observed for the p and s+p plasmons, in agreement with that previously reported for different graphitic allotropic forms. Moreover, a fast and highly efficient synthesis route to produce BN nanocapsules with a narrow size distribution was developed. This was achieved by an adapted substitution process using SWCNT as templates followed by a rapid cooling treatment. The IR responses reveal the strong dipole active fingerprint lines of h-BN with distinct differences, which are due to texturing effects and which highlight the BN nanocapsules potential application as a reference source when deriving the sp2 to sp3 ratio in BN species due to their random orientation Furthermore, the idea of substitution was used for the systematic studies of B-doped SWCNT. The experiments carried out have resulted in 1, 5, 10, and 15 % boron incorporated into the single wall carbon nanotubes. Core level excitation spectroscopy of the B1s and C1s edges revealed that the boron atoms substitute carbon atoms in the tube lattice keeping an sp2-like bond with their nearest C neighbour atoms. Our results show that a simple rigid band model as has been applied previously to intercalated SWCNT is not sufficient to explain the changes in the electronic properties of highly doped B-SWCNT and a new type of a highly defective BC3 SWNT with new electronic properties is obtained. Finally, different silicon carbide nanostructures were produced. The spectroscopic and microscopic data led to a good understanding of the formation process. NH3 acts as a source of hydrogen that plays a key role in the formation of the structures through its ability to decompose SiC at high temperature such that along with the stacking faults that arise from the many polytypes of SiC the produced SiC nanorods become porous then hollow and eventually are completely decomposed.
27

Adhesion and dissipation at nanoscale

Li, Tianjun 10 October 2013 (has links) (PDF)
In this thesis, we test some interactions involving surfaces processes at the nanometer scale. The experiments are conducted with a highly sensitive interferometric Atomic Force Microscope (AFM), achieving a resolution down to E-28m2/Hz for the measurement of deflection. Combined with original thermal noise analysis, this tool allows quantitative characterization of the mechanical response of micrometer and nanometer sized systems, such as microcantilevers or carbon nanotubes, on a large frequency range.The first part of my work deals with the viscoelasticity of the coating of AFM cantilevers. Evidenced by a 1/f thermal noise at low frequency, this phenomenon is present when a cantilever is coated with a metallic layer (gold, aluminium, platinium, etc...). Using the fluctuation dissipation theorem and Kramers Kronig relations, we extract the frequency dependance of this viscoelastic damping on a wide range of frequency (1Hz to 20kHz). We find a generic power law dependence in frequency for this dissipation process, with a small negative coefficient that depends on materials. The amplitude of this phenomenon is shown to be linear in the coating thickness, demonstrating that the damping mechanism takes its roots in the bulk of the metallic layer.The second part of my work tackles new experiments on the interaction of carbon nanotubes with flat surfaces. Using our AFM, we perform a true mechanical response measurement of the rigidity and dissipation of the contact between the nanotube and the surface, in a peeling configuration (the nanotube is partially absorbed to the substrate). The results of this protocol are in line with the dynamic stiffness deduced from the thermal noise analysis, showing an unexpected power law dependence in frequency for the contact stiffness. We suggest some possible physical origins to explain this behavior, such as an amorphous carbon layer around the nanotube.
28

Optical emission spectroscopy of laser induced plasmas containing carbon and transitional metals.

Motaung, David Edmond. January 2008 (has links)
<p>The spectroscopic, SEM and Raman measurements on carbon nanotubes under the exact conditions of which OES analysis were made showed that at<br /> a pressure of 400 Torr and a flow rate of 200 sccm, the quality and quantity of single-walled carbon nanotubes was the highest.</p>
29

Scalable carbon nanotube growth and design of efficient catalysts for Fischer-Tropsch synthesis

Almkhelfe, Haider H. January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Placidus B. Amama / The continued depletion of fossil fuels and concomitant increase in greenhouse gases have encouraged worldwide research on alternative processes to produce clean fuel. Fischer-Tropsch synthesis (FTS) is a heterogeneous catalytic reaction that converts syngas (CO and H₂) to liquid hydrocarbons. FTS is a well-established route for producing clean liquid fuels. However, the broad product distribution and limited catalytic activity are restricting the development of FTS. The strong interactions between the active metal catalyst (Fe or Co) and support (Al₂O₃, SiO₂ and TiO₂) during post-synthesis treatments of the catalyst (such as calcination at ~500°C and reduction ~550°C) lead to formation of inactive and unreducible inert material like Fe₂SiO₄, CoAl₂O₄, Co₂SiO₄. The activity of FTS catalyst is negatively impacted by the presence of these inactive compounds. In our study, we demonstrate the use of a modified photo-Fenton process for the preparation of carbon nanotube (CNT)-supported Co and Fe catalysts that are characterized by small and well-dispersed catalyst particles on CNTs that require no further treatments. The process is facile, highly scalable, and involves the use of green catalyst precursors and an oxidant. The reaction kinetic results show high CO conversion (85%), selectivity for liquid hydrocarbons and stability. Further, a gaseous product mixture from FTS (C1-C4) was utilized as an efficient feedstock for the growth of high-quality, well-aligned single-wall carbon nanotube (SWCNT) carpets of millimeter-scale heights on Fe and (sub) millimeter-scale heights on Co catalysts via chemical vapor deposition (CVD). Although SWCNT carpets were grown over a wide temperature range (between 650 and 850°C), growth conducted at optimal temperatures for Co (850°C) and Fe (750°C) yielded predominantly SWCNTs that are straight, clean, and with sidewalls that are largely free of amorphous carbon. Also, low-temperature CVD growth of CNT carpets from Fe and Fe–Cu catalysts using a gaseous product mixture from FTS as a superior carbon feedstock is demonstrated. The efficiency of the growth process is evidenced by the highly dense, vertically aligned CNT structures from both Fe and Fe–Cu catalysts even at temperatures as low as 400°C–a record low growth temperature for CNT carpets obtained via conventional thermal CVD. The use of FTS-GP facilitates low-temperature growth of CNT carpets on traditional (alumina film) and nontraditional substrates (aluminum foil) and has the potential of enhancing CNT quality, catalyst lifetime, and scalability. We demonstrate growth of SWCNT carpets with diameter distributions that are smaller than SWCNTs in conventional carpets using a CVD process that utilizes the product gaseous mixture from Fischer-Tropsch synthesis (FTS-GP). The high-resolution transmission electron microscopic (HR-TEM) and Raman spectroscopic results reveal that the use of a high melting point metal as a catalyst promoter in combination with either Co (1.5 nm ± 0.7) at 850ºC or Fe (1.9 nm ± 0.8) at 750ºC yields smaller-diameter SWCNT arrays with narrow diameter distributions. Scalable synthesis of carbon nanotubes (CNTs), carbon nanofibers (CNFs), and onion like carbon (OLC) in a batch reactor using supercritical fluids as a reaction media is demonstrated. The process utilizes toluene, ethanol, or butanol as a carbon precursor in combination with ferrocene that serves as a catalyst precursor and a secondary carbon source. The use of supercritical fluids for growth does not only provide a route for selective growth of a variety of carbon nanomaterials, but also provides a unique one-step approach that is free of aggressive acid treatment for synthesis of CNT-supported metallic nanoparticle composites for catalysis and energy storage applications.
30

Optical emission spectroscopy of laser induced plasmas containing carbon and transitional metals

Motaung, David Edmond January 2008 (has links)
Magister Scientiae - MSc / The spectroscopic, SEM and Raman measurements on carbon nanotubes under the exact conditions of which OES analysis were made showed that at a pressure of 400 Torr and a flow rate of 200 sccm, the quality and quantity of single-walled carbon nanotubes was the highest. / South Africa

Page generated in 0.0588 seconds