• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 3
  • Tagged with
  • 21
  • 21
  • 21
  • 19
  • 19
  • 15
  • 15
  • 14
  • 12
  • 12
  • 12
  • 10
  • 10
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A combined experimental and theoretical approach towards the understanding of transport in one-dimensional molecular nanostructures

Grimm, Daniel 06 August 2008 (has links) (PDF)
This thesis comprises detailed experimental and theoretical investigations of the transport properties of one-dimensional nanostructures. Most of the work is dedicated to the exploration of the fascinating effects occurring in single wall carbon nanotubes (SWCNT). These particular nanostructures gained an overwhelming interest in the past two decades due to its outstanding electronic and mechanical features. We have investigated the properties of a novel family of carbon nanostructures, named here as Y-shaped rings. The studies show that they present very interesting quantum interference effects. A high structural stability under tensile strain and elevated temperatures is observed. Within the semi-classical potential adopted, the critical strain values of structure rupture lie in the same range of their pristine SWCNT counterparts. This is directly verified by the first observations of these ring-like structures in a transmission electron microscopy. A merging process of asymmetric into symmetric rings is investigated in-situ under electron beam irradiation at high temperatures. The electronic properties of these systems are theoretically studied using Monte Carlo simulations and environment dependent tight-binding calculations. From our results, we address the possibility of double-slit like interference processes of counter-propagating electron waves in the ring-like structures. The nature of well defined, sharp peaks in the density of states are determined as the discrete eigenenergies of the central loop part. Furthermore, the formation and dispersion of standing waves inside the ring is shown to originate from the quantum-dot like confinement of each branch between the leads. The obtained dispersion relation is shown to be the same occurring in purely one-dimensional quantum dots of similar geometries. Furthermore, Fabry-Perot-like interferences are observed. We established at the IFW a bottom-up processing route to fabricate nanotube based electronic devices. The SWCNTs are grown by chemical vapor deposition and we present a detailed study of the different approaches to obtain individual nanotubes suitable for a successful integration into electronic devices. Wet-chemistry and ultra-thin films as well as ferritin were employed as catalyst particles in the growth of SWCNT samples. By adjusting the optimized process parameters, we can control the obtained yield from thick nanotube forests down to just a couple of free-standing individual SWCNTs. The nanotubes are localized, contacted by standard e-beam lithography and characterized at ambient- as well as liquid helium temperatures. We usually obtain quite transparent contacts and the devices exhibit metallic or a mixed metallic/semiconducting behavior. The well-known memory effect upon gate voltage sweeping as well as single electron tunneling in the Coulomb blockade regime are addressed.
2

Synthesis, characterization and modification of carbon nanomaterials / Synthese, Charakterisierung und Modifizierung von Kohlenstoffnanomaterialien

Schäffel, Franziska 18 January 2010 (has links) (PDF)
The main objective of the present thesis is to deepen the understanding of the mechanisms involved in catalytic growth of carbon nanotubes (CNT) and related processes, such as the catalytic hydrogenation, and to use this knowledge to optimize the experimental approaches in order to gain better control in the synthesis and modification of carbon nanomaterials. Controlled growth of the CNT is achieved using gas-phase prepared catalyst particles (Fe, Co) which serve as individual catalytic nucleation sites in a chemical vapor deposition (CVD) process. These studies highlight that the controlled preparation of catalyst particles is a crucial step in order to control the CNT morphology. The resultant CNT diameter and the CNT density are found to increase with increasing nanoparticle diameter and density, respectively. The number of walls of the CNT also increases with increasing primary catalyst size. The experimentally derived correlations between the particle diameter on one hand and the CNT diameter and the CNT number of walls on the other hand are attributed to an increase of the catalyst's volume-to-surface area ratio with increasing particle size. While the availability of carbon dissolved within the catalyst at the point of nucleation is determined by the catalyst volume, the amount of carbon required to form a cap depends on the surface area of the catalyst particle. Electron microscopy studies of the catalyst/substrate/carbon interfaces of CNT grown from Fe nanoparticles reveal that the CNT walls are anchored to the oxide substrate which contests the general argument that the CNT walls stem from atomic steps at the catalyst. It is argued that after nucleation, the substrate itself provides a catalytic functionality towards the stimulation of ongoing CNT growth, whereas the catalytic activity of the metal particle is more restricted to the nucleation process. Selective hard-magnetic functionalization of CNT tips has been achieved in a plasma-enhanced CVD process. Hard-magnetically terminated CNT, i.e. CNT with a FePt nanoparticle at each tip, are directly grown using FePt catalysts. Fe/Pt thin films with a strongly over-stoichiometric Fe content in the starting catalyst composition yield CNT with a significant number of particles in the hard-magnetic phase. Anisotropic etching of graphite through Co catalyst particles in hydrogen atmosphere at elevated temperatures (i.e. catalytic hydrogenation) is reported. Catalytic hydrogenation is a potential key engineering route for the fabrication of graphene nanoribbons with atomic precision. While in previous studies the etching of zigzag channels was preferred, the present investigations reveal preferential etching of armchair channels, which provides a means to tailor graphene nanostructures with specific edge termination. Further, detailed morphological and structural characterization of the Co particles provide insight into the hydrogenation mechanism which is still a matter of controversy.
3

Synthesis, characterization and modification of carbon nanomaterials

Schäffel, Franziska 09 December 2009 (has links)
The main objective of the present thesis is to deepen the understanding of the mechanisms involved in catalytic growth of carbon nanotubes (CNT) and related processes, such as the catalytic hydrogenation, and to use this knowledge to optimize the experimental approaches in order to gain better control in the synthesis and modification of carbon nanomaterials. Controlled growth of the CNT is achieved using gas-phase prepared catalyst particles (Fe, Co) which serve as individual catalytic nucleation sites in a chemical vapor deposition (CVD) process. These studies highlight that the controlled preparation of catalyst particles is a crucial step in order to control the CNT morphology. The resultant CNT diameter and the CNT density are found to increase with increasing nanoparticle diameter and density, respectively. The number of walls of the CNT also increases with increasing primary catalyst size. The experimentally derived correlations between the particle diameter on one hand and the CNT diameter and the CNT number of walls on the other hand are attributed to an increase of the catalyst's volume-to-surface area ratio with increasing particle size. While the availability of carbon dissolved within the catalyst at the point of nucleation is determined by the catalyst volume, the amount of carbon required to form a cap depends on the surface area of the catalyst particle. Electron microscopy studies of the catalyst/substrate/carbon interfaces of CNT grown from Fe nanoparticles reveal that the CNT walls are anchored to the oxide substrate which contests the general argument that the CNT walls stem from atomic steps at the catalyst. It is argued that after nucleation, the substrate itself provides a catalytic functionality towards the stimulation of ongoing CNT growth, whereas the catalytic activity of the metal particle is more restricted to the nucleation process. Selective hard-magnetic functionalization of CNT tips has been achieved in a plasma-enhanced CVD process. Hard-magnetically terminated CNT, i.e. CNT with a FePt nanoparticle at each tip, are directly grown using FePt catalysts. Fe/Pt thin films with a strongly over-stoichiometric Fe content in the starting catalyst composition yield CNT with a significant number of particles in the hard-magnetic phase. Anisotropic etching of graphite through Co catalyst particles in hydrogen atmosphere at elevated temperatures (i.e. catalytic hydrogenation) is reported. Catalytic hydrogenation is a potential key engineering route for the fabrication of graphene nanoribbons with atomic precision. While in previous studies the etching of zigzag channels was preferred, the present investigations reveal preferential etching of armchair channels, which provides a means to tailor graphene nanostructures with specific edge termination. Further, detailed morphological and structural characterization of the Co particles provide insight into the hydrogenation mechanism which is still a matter of controversy.
4

A combined experimental and theoretical approach towards the understanding of transport in one-dimensional molecular nanostructures

Grimm, Daniel 09 July 2008 (has links)
This thesis comprises detailed experimental and theoretical investigations of the transport properties of one-dimensional nanostructures. Most of the work is dedicated to the exploration of the fascinating effects occurring in single wall carbon nanotubes (SWCNT). These particular nanostructures gained an overwhelming interest in the past two decades due to its outstanding electronic and mechanical features. We have investigated the properties of a novel family of carbon nanostructures, named here as Y-shaped rings. The studies show that they present very interesting quantum interference effects. A high structural stability under tensile strain and elevated temperatures is observed. Within the semi-classical potential adopted, the critical strain values of structure rupture lie in the same range of their pristine SWCNT counterparts. This is directly verified by the first observations of these ring-like structures in a transmission electron microscopy. A merging process of asymmetric into symmetric rings is investigated in-situ under electron beam irradiation at high temperatures. The electronic properties of these systems are theoretically studied using Monte Carlo simulations and environment dependent tight-binding calculations. From our results, we address the possibility of double-slit like interference processes of counter-propagating electron waves in the ring-like structures. The nature of well defined, sharp peaks in the density of states are determined as the discrete eigenenergies of the central loop part. Furthermore, the formation and dispersion of standing waves inside the ring is shown to originate from the quantum-dot like confinement of each branch between the leads. The obtained dispersion relation is shown to be the same occurring in purely one-dimensional quantum dots of similar geometries. Furthermore, Fabry-Perot-like interferences are observed. We established at the IFW a bottom-up processing route to fabricate nanotube based electronic devices. The SWCNTs are grown by chemical vapor deposition and we present a detailed study of the different approaches to obtain individual nanotubes suitable for a successful integration into electronic devices. Wet-chemistry and ultra-thin films as well as ferritin were employed as catalyst particles in the growth of SWCNT samples. By adjusting the optimized process parameters, we can control the obtained yield from thick nanotube forests down to just a couple of free-standing individual SWCNTs. The nanotubes are localized, contacted by standard e-beam lithography and characterized at ambient- as well as liquid helium temperatures. We usually obtain quite transparent contacts and the devices exhibit metallic or a mixed metallic/semiconducting behavior. The well-known memory effect upon gate voltage sweeping as well as single electron tunneling in the Coulomb blockade regime are addressed.
5

Oberflächenmodifizierung von Kohlenstofffasern und organischen Membranen mittels Gasphasenabscheidung

Knohl, Stefan 25 January 2016 (has links) (PDF)
Gegenstand dieser Arbeit ist die Modifizierung von Oberflächen durch die Abscheidung alternierender Schichtsysteme auf Kohlenstofffasern und die Abscheidung von Aluminiumoxid auf organischen Membranen. Im ersten Kapitel wird das Vorgehen zur Abscheidung von organischen und anorganischen Schichten auf Kohlenstofffasern mittels der Atomlagenabscheidung und der oberflächeninitiierten Gasphasenabscheidung betrachtet. Dabei wird als Erstes auf die Abscheidung von Einzellagen und deren Optimierung eingegangen sowie im Anschluss auf die Übertragung dieser Parameter auf die Abscheidung von alternierenden Multilagensystemen. Mittels elektronenmikroskopischen-Untersuchungen, Rasterelektronenmikroskopie und energiedispersiver Röntgenspektroskopie, wird die Abscheidung der Materialien untersucht. Weiterhin können mit Hilfe von thermogravimetrischen Analysen die Oxidationsbeständigkeit der beschichteten Kohlenstofffasern sowie die einzelnen Schichtdicken bestimmt werden. Im zweiten Kapitel wird auf die Beschichtung von organischen Membranen eingegangen. Das Hauptaugenmerk liegt dabei auf der Beschichtung von nicht-hierarchisch und hierarchisch strukturierten Membranen mit Aluminiumoxid. Dafür werden die Atomlagenabscheidung und die Grenzflächenreaktion der Gasphase mit der im Feststoff gebundenen Flüssigphase angewendet. Unter Anwendung dieser beiden Verfahren ist es gelungen, dünne und gleichmäßige Schichten auf den Membranen abzuscheiden. Die Charakterisierung erfolgte mittels Rasterelektronenmikroskopie und energiedispersiver Röntgenspektroskopie. Zum Schluss wurden Filtrationsexperimente zum Vergleich der Stabilität und Durchflussraten der beschichteten mit den unbeschichteten Membranen durchgeführt.
6

Synthesis of Mg and Zn diolates and their use in metal oxide deposition

Frenzel, Peter, Preuß, Andrea, Bankwitz, Jörn, Georgi, Colin, Ganss, Fabian, Mertens, Lutz, Schulz, Stefan E., Hellwig, Olav, Mehring, Michael, Lang, Heinrich 08 April 2019 (has links)
The synthesis of complexes [M(OCHMeCH2NMeCH2)2] (5, M = Mg; 7, M = Zn) is described. Treatment of MeHNCH2CH2NMeH (1) with 2-methyloxirane (2) gave diol (HOCHMeCH2NMeCH2)2 (3), which upon reaction with equimolar amounts of MR2 (4, M = Mg, R = Bu; 6, M = Zn, R = Et) gave 5 and 7. The thermal behavior and vapor pressure of 5 and 7 were investigated to show whether they are suited as CVD (= chemical vapor deposition) and/or spin-coating precursors for MgO or ZnO layer formation. Thermogravimetric (TG) studies revealed that 5 and 7 decompose between 80–530 °C forming MgO and ZnO as evidenced by PXRD studies. In addition, TG-MS-coupled experiments were carried out with 7 proving that decomposition occurs by M–O, C–O, C–N and C–C bond cleavages, as evidenced from the detection of fragments such as CH4N+, C2H4N+, C2H5N+, CH2O+, C2H2O+ and C2H3O+. The vapor pressure of 7 was measured at 10.4 mbar at 160 °C, while 5 is non-volatile. The layers obtained by CVD are dense and conformal with a somewhat granulated surface morphology as evidenced by SEM studies. In addition, spin–coating experiments using 5 and 7 as precursors were applied. The corresponding MO layer thicknesses are between 7–140 nm (CVD) or 80 nm and 65 nm (5, 7; spin-coating). EDX and XPS measurements confirm the formation of MgO and ZnO films, however, containing 12–24 mol% (CVD) or 5–9 mol% (spin-coating) carbon. GIXRD studies verify the crystalline character of the deposited layers obtained by CVD and the spin-coating processes.
7

Multi-staged deposition of trench-gate oxides for power MOSFETs

Neuber, Markus, Storbeck, Olaf, Langner, Maik, Stahrenberg, Knut, Mikolajick, Thomas 06 October 2022 (has links)
Here, silicon oxide was formed in a U-shaped trench of a power metal-oxide semiconductor field-effect transistor device by various processes. One SiO₂ formation process was performed in multiple steps to create a low-defect Si-SiO₂ interface, where first a thin initial oxide was grown by thermal oxidation followed by the deposition of a much thicker oxide layer by chemical vapor deposition (CVD). In a second novel approach, silicon nitride CVD was combined with radical oxidation to form silicon oxide in a stepwise sequence. The resulting stack of silicon oxide films was then annealed at temperatures between 1000 and 1100 °C. All processes were executed in an industrial environment using 200 mm-diameter (100)-oriented silicon wafers. The goal was to optimize the trade-off between wafer uniformity and conformality of the trenches. The thickness of the resulting silicon oxide films was determined by ellipsometry of the wafer surface and by scanning electron microscopy of the trench cross sections. The insulation properties such as gate leakage and electrical breakdown were characterized by current–voltage profiling. The electrical breakdown was found to be highest for films treated with rapid thermal processing. The films fabricated via the introduced sequential process exhibited a breakdown behavior comparable to films deposited by the common low-pressure CVD technique, while the leakage current at electric fields higher than 5 MV/cm was significantly lower.
8

Atomistische Modellierung und Simulation des Filmwachstums bei Gasphasenabscheidungen

Lorenz, Erik E. 30 January 2015 (has links) (PDF)
Gasphasenabscheidungen werden zur Produktion dünner Schichten in der Mikro- und Nanoelektronik benutzt, um eine präzise Kontrolle der Schichtdicke im Sub-Nanometer-Bereich zu erreichen. Elektronische Eigenschaften der Schichten werden dabei von strukturellen Eigenschaften determiniert, deren Bestimmung mit hohem experimentellem Aufwand verbunden ist. Die vorliegende Arbeit erweitert ein hochparalleles Modell zur atomistischen Simulation des Wachstums und der Struktur von Dünnschichten, welches Molekulardynamik (MD) und Kinetic Monte Carlo-Methoden (KMC) kombiniert, um die Beschreibung beliebiger Gasphasenabscheidungen. KMC-Methoden erlauben dabei die effiziente Betrachtung der Größenordnung ganzer Nano-Bauelemente, während MD für atomistische Genauigkeit sorgt. Erste Ergebnisse zeigen, dass das Parsivald genannte Modell Abscheidungen in Simulationsräumen mit einer Breite von 0.1 µm x 0.1 µm effizient berechnet, aber auch bis zu 1 µm x 1 µm große Räume mit 1 Milliarden Atomen beschreiben kann. Somit lassen sich innerhalb weniger Tage Schichtabscheidungen mit einer Dicke von 100 Å simulieren. Die kristallinen und amorphen Schichten zeigen glatte Oberflächen, wobei auch mehrlagige Systeme auf die jeweilige Lagenrauheit untersucht werden. Die Struktur der Schicht wird hauptsächlich durch die verwendeten molekulardynamischen Kraftfelder bestimmt, wie Untersuchungen der physikalischen Gasphasenabscheidung von Gold, Kupfer, Silizium und einem Kupfer-Nickel-Multilagensystem zeigen. Stark strukturierte Substrate führen hingegen zu Artefakten in Form von Nanoporen und Hohlräumen aufgrund der verwendeten KMC-Methode. Zur Simulation von chemischen Gasphasenabscheidungen werden die Precursor-Reaktionen von Silan mit Sauerstoff sowie die Hydroxylierung von alpha-Al2O3 mit Wasser mit reaktiven Kraftfeldern (ReaxFF) berechnet, allerdings ist weitere Arbeit notwendig, um komplette Abscheidungen auf diese Weise zu simulieren. Mit Parsivald wird somit die Erweiterung einer Software präsentiert, die Gasphasenabscheidungen auf großen Substraten effizient simulieren kann, dabei aber auf passende molekulardynamische Kraftfelder angewiesen ist.
9

Atomic Layer Deposition onto Fibers / Atomlagenabscheidung auf Fasern

Roy, Amit Kumar 19 March 2012 (has links) (PDF)
The main goal of this dissertation was to show that the principle of atomic layer deposition (ALD) can be applied to “endless” fibers. A reactor of atomic layer deposition has been designed, especially for coating depositions onto meter long bundles of fibers. Aluminum oxide (alumina), titanium oxide (titania), double layers of alumina and titania, as well as aluminium phosphate have been deposited onto bundles of carbon fibers using the home-built reactor. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images indicate that the coatings were uniform and conformal onto fiber surface. There was a good adhesion of the coatings to the fibers. Alumina has been deposited using two separate aluminum sources (aluminum trichloride and trimethylaluminum), and water as a source of oxygen. In case of alumina deposition using aluminum trichloride and water, initial deposition temperature was 500 °C. In these conditions, a part of the fiber bundle has been damaged. Thus, the deposition temperature was decreased to 300 °C and the fibers were unaffected. In addition, during this process hydrochloric acid is formed as a byproduct which is a corrosive substance and affects the reactor and there was a chloride impurity in the coatings. Thus, aluminum trichloride precursor was replaced by trimethylalumium. Alumina deposition onto carbon fibers using trimethylaluminum and water was carried out at a temperature of 77 °C. SEM images revealed that the fibers were unaffected and the coatings were uniform and conformal. Oxidation resistance of the carbon fibers was improved slightly after alumina deposition. Oxidation onset temperature of the uncoated fibers was about 630 °C. The resistance was linearly increased with the coating thickness (up to 660 °C) and getting saturated over a thickness of 120 nm. Titania coatings have been deposited using titanium tetrachloride and water. The physical appearances of the titania coatings were similar to the alumina coatings. The oxidation onset temperature of the titania coated carbon fibers was similar to the uncoated fibers but the rate of oxidation was decreased than the uncoated fibers. Two double layer coatings were deposited, alumina followed by titania (alumina/titania), and titania followed by alumina (titania/alumina). If the fibers were coated with the double layer of alumina/titania, they had almost same oxidation onset as alumina coated fibers but the rate of oxidation was decreased significantly compared to alumina coated fibers. This feature is independent of the thickness of the titania layers, at least in the regime investigated (50 nm alumina followed by 13 nm and 40 nm titania). On the other hand, the oxidation onset temperature of fibers coated with titania/alumina (20 nm titania /30 nm alumina) was approximately 750 °C. The fibers were burned completely when temperature was further increased to 900 °C and held another 60 minutes at 900 °C. This is significantly better than any other coating used in this dissertation. ALD of titania and alumina in principle was known beforehand, this dissertation here applies this knowledge for the first time to endless fibers. Furthermore, this dissertation shows for the first time that one can deposit aluminum phosphate via ALD (planar surface as well as fibers). Aluminum phosphate might be special interest in the fiber coating because it is a rather soft material and thus might be used to obtain a weak coupling between fiber and matrix in composites. Aluminum phosphate was deposited using trimethylaluminum and triethylphosphate as precursors. Energy dispersive X-ray spectroscopy and solid state nuclear magnetic resonance spectra confirmed that the coating comprises aluminum phosphate (orthophosphate as well as other stoichiometries). Scanning electron microscopic images revealed that coatings are uniform and conformal. In cases of alumina and titania, it was observed that the coatings were delaminated from the ends of cut fibers and thus formed of clear steps. On the other hand, for aluminum phosphate coating it was observed that the border between coating and underlying fiber often being smeared out and thus formed an irregular line. It seems in case aluminum phosphate cohesion is weaker than adhesion, thus it might be act a weak interface between fiber and matrix. Alumina, titania, and double layer microtubes have been obtained after selective removal of the underlying carbon fibers. The carbon fibers were selectively removed via thermal oxidation in air at temperatures exceeding 550 °C. SEM and TEM images indicate that the inner side of the tube wall has the same morphology like the fibers. In addition, it was observed that the individual microtubes were separated from their neighbors and they had almost uniform wall thicknesses. The longest tubes had a length of 30 cm. / Das Hauptziel dieser Dissertation bestand darin nachzuweisen, dass die Atomlagenabscheidung (engl. atomic layer deposition (ALD)) auf „endlose“ Fasern angewendet werden kann. Es wurde ein Reaktor zur Atomlagenabscheidung gestaltet, der speziell für die Beschichtung meterlanger Faserbündel geeignet ist. Aluminiumoxid, Titanoxid, Doppelschichten aus Aluminiumoxid und Titanoxid sowie Aluminiumphosphat wurden mit Hilfe des selbstgebauten Reaktors auf Kohlefaserbündel abgeschieden. Rasterelektronenmikroskopische (REM) und transmissionselektronenmikroskopische (TEM) Aufnahmen zeigten, dass die Beschichtung auf den Fasern einheitlich und oberflächentreu war. Des Weiteren wurde eine gute Adhäsion zwischen Beschichtung und Fasern beobachtet. Das Prinzip der Beschichtung mit Titanoxid und Aluminiumoxid mit Hilfe der ALD war bereits vorher bekannt und im Rahmen dieser Dissertation jedoch erstmals auf "endlose" Fasern angewendet. Des Weiteren wird in dieser Dissertation erstmals gezeigt, dass es möglich ist, Aluminiumphosphat mittels ALD abzuscheiden (sowohl auf planaren Oberflächen als auch auf Fasern). Aluminiumphosphat könnte von besonderem Interesse in der Faserbeschichtung sein, da es ein relativ weiches Material ist und könnte daher als eine Art „schwacher“ Verbindung zwischen Faser und Matrix in Kompositen dienen. Die Oxidationsbeständigkeit von beschichten Kohlefasern wurde im Vergleich zu unbeschichteten Fasern bis zu einem gewissen Grad erhöht. Monoschichten von Aluminiumoxid und Titanoxid waren dafür wenig effektiv. Aluminiumphosphatbeschichtete Fasern waren deutlich besser geeignet als die beiden anderen. Eine Doppelschicht aus Titanoxid gefolgt von Aluminiumoxid verbesserte die Oxidationsbeständigkeit nochmals deutlich gegenüber allen anderen Beschichtungen, die in dieser Dissertation verwendet wurden. Mikroröhren aus Aluminiumoxid, Titanoxid und Doppelschichten wurden durch die selektive Entfernung der zugrunde liegenden Kohlefasern erhalten. Einzelne Mikroröhren waren von benachbarten Röhren getrennt und sie weisen eine nahezu einheitliche Wanddicke auf.
10

Elektronische Eigenschaften von Diamant und diamantartigen Kohlenstoffen / Electronic properties of diamond and diamond-like carbon

Waidmann, Stephan 16 July 2001 (has links) (PDF)
Im Hinblick auf das immense Potential von Diamant als Material für die Mikroelektronik wurden im Rahmen dieser Arbeit undotierte und dotierte Diamantfilme mittels chemischer Gasphasenabscheidung auf Silizium präpariert und anschließend auf ihre elektronischen Eigenschaften hin untersucht. Für Letzteres wurde hauptsächlich die Elektronen-Energieverlustspektroskopie in Transmission verwendet. In situ Gasphasendotierung oder Ionenimplantation wurde zur Dotierung der Filme mit Bor, Lithium oder Phosphor eingesetzt. Bei der Ionenimplantation wurde aufgrund der Erzeugung von Strahlenschäden generell eine Erhöhung des sp2-Anteils beobachtet: Letzterer konnte jedoch im Falle der Bordotierung durch eine, den Implantationsprozeß folgende, Hochtemperaturtemperung wieder deutlich vermindert werden. Für die in situ Dotierung mit Bor wurde eine Verringerung des sp2-Gehaltes mit steigender Dotierkonzentration gefunden. Für den Film mit der höchsten Borkonzentration konnte auch die B1s Absorptionskante untersucht werden. Sie gibt Hinweise auf den überwiegenden Einbau der Boratome in einer tetragonalen Orientierung. Das hiermit verbundene Vorhandensein von Akzeptoren führt zu elektronischen Anregungen im Energiebereich der Bandlücke, welche mittels Infrarotspektroskopie und EELS nachgewiesen werden konnten. Aus den EELS Messungen lassen sich Akzeptorkonzentrationen berechnen, welche wiederum den hohen Anteil an tetraedrisch eingebauten Boratomen bestätigen. Desweiteren untersucht wurden, als interessante Materialklasse mit weitreichendem technologischem Potential, undotierte und stickstoffdotierte, diamantartige amorphe Kohlenstoffilme und hierbei insbesondere die Abhängigkeit der elektronischen und optischen Eigenschaften von der Ionenenergie und dem Stickstoffpartialdruck während der Filmpräparation. Die Plasmonenergien, Massendichten, sp3-Anteile und die optischen Bandlücken der Filme wurden quantitativ bestimmt, wobei das jeweilige Maximum bei einer Ionenenergie von 100 eV gefunden wurde. Alle eben genannten Größen verringern sich kontinuierlich mit zunehmendem Stickstoffanteil. Eine Kramers-Kronig Analyse der Verlustspektren gibt Zugriff auf den Real- und Imaginärteil der dielektrischen Funktion und damit auf das Spektrum der Einteilchenanregungen. Die Hybridisierung der Kohlenstoff- und der Stickstoffatome wurde detailliert aus den jeweiligen 1s Absorptionskanten bestimmt. Weiterhin wurde Diamant als Modellsystem eines Festkörpers mit rein kovalenten Bindungen untersucht, insbesondere die Verlustfunktion von Diamant entlang mehrerer Hochsymmetriekristallrichtungen über einen großen Energie- und Impulsbereich. Aus den EELS Messungen erschließt sich unmittelbar die stark anisotrope Plasmonendispersion von Diamant. Aus dem Vergleich der experimentellen Spektren mit ab initio LDA Rechnungen, die sowohl Kristallokalfeldeffekte als auch Austausch- und Korrelationseffekte beinhalten, lassen sich direkt Rückschlüsse auf den Einfluß der verschiedenen Effekte ziehen. Schon im optischen Limit, aber umso mehr mit steigendem Impulsübertrag q, wird eine Überlagerung der kollektiven Plasmonanregung mit Einteilchenanregungen im Energiebereich des Plasmons beobachtet, woraus eine Kopplung zwischen beiden Arten von Anregungen resultiert. Abgesehen vom deutlichen Einfluß der Bandstruktur auf die Plasmonendispersion läßt die überaus inhomogene Elektronenverteilung von Diamant auf nicht zuvernachlässigende Kristallokalfeldeffekte schließen. Der Vergleich zwischen experimentellen und berechneten Spektren zeigt deutlich, wie die Kristallokalfeldeffekte in der Tat mit steigendem Impulsübertrag an Gewicht zunehmen und die Struktur der Verlustfunktion mitbestimmen. / In the context of the immense potential of diamond as a material for use in the microelectronics industry, in this thesis pristine and doped diamond films have been deposited on silicon using chemical vapour deposition. Subsequently their electronic properties have been investigated using mainly electron energy-loss spectroscopy. Doping of the films with boron, lithium or phosphorous was carried out either via in-situ gas phase doping during film growth or using ion implantation. Upon ion implantation an increase of the carbon content with sp2 hybridisation has generally been found due to ion beam induced damage. In the case of boron doping it was possible to significantly reduce this sp2-contribution using a high temperature anneal. For the in-situ doping with boron, upon increasing doping concentration a decrease of the sp2-contribution was found. For the sample with the highest boron content the boron 1s absorption edge could also be investigated, providing evidence for the preferential incorporation of the boron atoms into tetrahedrally co-ordinated sites. This boron incorporation leads to the existence of electronic excitations in the energy range of the band gap, which could be observed using both infrared and electron energy-loss spectroscopy. From the electron energy-loss measurements it was possible to calculate acceptor concentrations which were consistent with the large amount of tetrahedrally co-ordinated boron atoms. A second theme in this thesis involved the study of pristine and nitrogen doped diamond-like amorphous carbon films, which are an interesting material class with far-reaching technological potential. Here the focus of the research concerned the dependency of the electronic and optical properties of the films upon the ion energy and the nitrogen partial pressure applied during the film preparation. The plasmon energies, mass densities, sp3 contribution and the optical band gaps of the samples were determined quantitatively, whereby the maximum in all these quantities was found to occur for ion energies of 100 eV. Furthermore, all of these characteristics were found to decrease continually with increasing nitrogen content. A Kramers-Kronig analysis of the loss spectra enabled the derivation of the real and imaginary parts of the dielectric function and with this of the complete spectrum of single particle excitations. The hybridization between the carbon and nitrogen atoms was also studied in detail from the analysis of the respective 1s absorption edges. Furthermore this thesis deals with the investigation of diamond as a model system for solids with pure covalent bonds. In particular, the loss function of diamond was measured along different high symmetry directions over a wide range of energy and momentum. Firstly, the EELS measurements showed directly the strongly anisotropic nature of the plasmon dispersion in diamond. Secondly, by the comparison of the experimental spectra with ab initio LDA-based calculations that include crystal local field effects as well as exchange and correlation contributions, conclusions can be drawn as to the influence of these quantities. In the optical limit, but even more so with increasing momentum transfer q, a superposition of the collective plasmon excitation and the single particle excitations in the energy range of the plasmon is observed. This energetic proximity results in a coupling between both types of excitations. Apart from the distinct influence of the bandstructure on the plasmon dispersion, the considerably inhomogeneous electron distribution of diamond would lead one to expect significant crystal local field effects in this system. The comparison between the experimental and the calculated spectra shows explicitly that the crystal local field effects increase with increasing momentum transfer and play an important role in defining the structure of the loss function.

Page generated in 0.0942 seconds