Spelling suggestions: "subject:"anorganische beschichtung"" "subject:"anorganische bandbeschichtung""
1 |
Beschichtung planarer Substrate durch Flüssigphasenabscheidung von Titandioxid / Liquid Phase Deposition of titanium dioxide for coating of planar substratesMallak, Matthias January 2006 (has links) (PDF)
Es wurden planare Substrate mittels Flüssigphasenabscheidung mit Titandioxid beschichtet. Durch Absorption von Polyelektrolyten konnte die chemische Beschaffenheit der Substratoberfläche so verändert werden, daß die verwendbaren Substratmaterialien zur Beschichtung mit dem LPD-Verfahren um Glas, Polycarbonat, PET und Polyethylen erweitert wurden. Bedeutung kommt besonders der LPD-Beschichtung auf Borosilicatglas zu, da damit erstmalig ein Vergleich zwischen TiO2-Schichten aus der Flüssigphasenabscheidung und Schichten, die mittels Sol-Gel-Verfahren gewonnen wurden, möglich wurde. Der systematische Vergleich zwischen den Schichten der beiden Beschichtungsverfahren, ergab, daß Sol-Gel-Beschichtungen eine thermische Nachbehandlung mit Temperaturen größer 400°C benötigen, um ihre optimalen optischen und mechanischen Eigenschaften zu erreichen. Dabei tritt zwar eine starke Schrumpfung durch die Pyrolyse organischer Reste und Kristallisation auf. Jedoch führt diese Schrumpfung zu keiner Rißbildung oder Delaminierung. Im Gegenteil, die Ausbildung eines anorganischen Netzwerkes führt zum Aushärten der Schicht. Die bei höheren Temperaturen auftretende Kristallisation ermöglicht einen höheren Brechungsindex der Schicht bei gleichbleibend sehr guter Transparenz. Die bereits teilkristallin abgeschiedenen TiO2-Filme aus dem LPD-Verfahren schrumpfen zwar weit weniger stark als die Sol-Gel-Schichten, durch eine schlechte Haftung auf der Glasoberfläche verbreitern sich jedoch bereits vorhandene schmale Risse. Die Pyrolyse des Polyelektrolytlayers führt zum Verlust der haftvermittelnden Schicht und damit zu einem drastischen Rückgang der Schichthaftung und daraus bedingend der Bleistifthärte. Die Rißbildung verursacht einen starken Anstieg der Schichttrübung. Weiterhin verursacht die Rißverbreitung bei steigender Temperatur einen geringeren Brechzahlanstieg, als dies das LPD-Material ermöglichen würde. Durch diese Ergebnisse wird offensichtlich, daß für Substrate, die hohe Temperaturen ermöglichen, Sol-Gel-Beschichtungen dem LPD-Verfahren vorzuziehen ist. Für thermisch nicht belastbare Substrate stellt die Flüssigphasenabscheidung jedoch ein sehr gutes Beschichtungsverfahren dar. Um bestmögliche Ergebnisse mit dem LPD-Verfahren zu erzielen, kommt der Modifizierung der Substratoberfläche eine entscheiden Bedeutung zu. Zur bereits bekannten Oberflächenmodifizierung durch Ätzen mit Natriumperoxodisulfat (Hydroxylierung) wurde hierbei die zusätzliche bzw. alleinige Funktionalisierung durch Adsorption eines Polyelektrolytbilayers untersucht. Durch die Verwendung eines Polyelektrolytbilayers konnte die Dichte an Kristallisationsstellen im Vergleich zum unbehandelten bzw. hydroxylierten Substrat erhöht werden. Dies führte im Einklang mit dem bekannten Schichtwachstummodell zu gleichmäßigeren Beschichtungen. Der Einsatz des Polyelektrolytbilayers konnte in allen Fällen dazu genutzt werden, die Trübung der Schicht zu verringern. Dabei wurden Trübungswerte größer 50 % meist auf Werte von ca. 20 % und kleiner verbessert. Hohe Keimdichten bewirken dabei eine geringe Trübung. Jedoch konnte auch bei geringeren Keimdichten durch den Polyelektrolytbilayer geringe Trübungswerte erreicht werden. Bei der mechanischen Charakterisierung der TiO2-Schichten konnte festgestellt werden, daß bei den polymeren Substraten durch Hydroxylierung oder den Polyelektrolytbilayer die Schichthaftung verbessert werden. Eine Abhängigkeit der mechanischen Schichteigenschaften von der Substrathärt konnte mit Ausnahme des sehr weichen Polyethylens nicht gefunden werden. Jedoch ist für eine hohe Bleistifthärte eine gute Haftung nötig. Abriebuntersuchungen mit einem Filzstempel (Crockmetertest) zeigten ein analoges Verhalten zum Bleistifthärtetest. Um eventuell auftretende Nachteile der weichen Polymere ausgleichen zu können, wurden parallel Polystyrolsubstrate, beschichtet mit einer ORMOCER®-Hartschicht, untersucht. Dabei wurden sehr gute Ergebnisse in Hinblick auf Keimstellendichte, optische und mechanische Eigenschaften erzielt. / Planar substrates were coated with titanium dioxide by liquid phase deposition. The chemical properties of substrate surface were changed through adsorption of polyelectrolytes, so that coating of glass, polycarbonate, PET and polyethylene with the LPD process could be done. Especially the LPD-Coating on borofloatglass is of importance. For the first time, a comparison between coatings from liquid phase deposition and coatings from sol-gel process became possible. The systematic comparison between the films of the two coating processes showed that sol-gel coatings need a thermal treatment at temperature above 400 °C to unfold their optimal optical and mechanical properties. Thereby a high shrinkage caused by pyrolysis of organic residues and crystrallisation occurs. But that shrinkage does not lead to formation of cracks or delamination. In Contrast, the formation of a inorganic backbone leads to a hardening of the film. At higher temperature emerging crystallisation enables a higher refractive index with constant very good transparency. The partially crystalline films from the LPD-process shrink much less than the sol-gel films. But caused by a bad adhesion on the glass surface small cracks get broadened. Pyrolysis of polyelectrolytes leads to a loss of the bonding agent and associated with that to dramatic decrease in adhesion and pencil hardness. The formation of cracks causes an high increase in the haze of the film. The broadening of cracks at rising temperature avoids a higher increase in refractive index as could be possible from the LPD-material properties. These results reveal that for substrates tolerating high temperatures sol-gel-coating is preferable to the LPD-process. For thermal non-stable substrates the liquid phase deposition is a very suitable coating technique. To achieve best possible results with the LPD-Process, the modification of the substrate surface is of importance. Beside the already known surface modification through etching with sodium peroxodisulfate (hydroxylation) the additional or exclusive surfacemodification through of adsorption a polyelectrolytebilayer was investigated. By the application of a polyelectrolytebilayer the density of nucleation sites could be increased in comparison with the untreated or hydroxylated substrate. This leads in consistence with the known film formation model to more homogeneous coatings. In general the application of the polyelectrolytebilayer reduced the haze of the film. In most cases the haze was decreased from 50 % and higher to 20% and lower. High densities of nucleation sites effect a low haze. But using the polyelectrolytebilayer low haze could also achieved despite a low nuclei density. Based on the mechanical characterisation of the TiO2-films could be demonstrated that on polymeric substrates the adhesion increases if hydroxylation or polyelctrolytebilayers are used. A dependence of mechanical film properties on the hardness of the substrate could not be detected with the exception of the very soft polyethylene. For a high pencil hardness a high adhesion is the crucial factor . Abrasion test with a felt die (Crockmeter)showed an analogue behaviour as the pencil hardness test. To compensate potential disadvantages from the soft polymers, polystyrene substrates with a ORMOCER®-hardcover-film were examined. Films on these substrates showed very good results refering to the density of nucleation sites, optical and mechanical properties.
|
2 |
Atomic Layer Deposition onto Fibers / Atomlagenabscheidung auf FasernRoy, Amit Kumar 19 March 2012 (has links) (PDF)
The main goal of this dissertation was to show that the principle of atomic layer deposition (ALD) can be applied to “endless” fibers. A reactor of atomic layer deposition has been designed, especially for coating depositions onto meter long bundles of fibers. Aluminum oxide (alumina), titanium oxide (titania), double layers of alumina and titania, as well as aluminium phosphate have been deposited onto bundles of carbon fibers using the home-built reactor. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images indicate that the coatings were uniform and conformal onto fiber surface. There was a good adhesion of the coatings to the fibers.
Alumina has been deposited using two separate aluminum sources (aluminum trichloride and trimethylaluminum), and water as a source of oxygen. In case of alumina deposition using aluminum trichloride and water, initial deposition temperature was 500 °C. In these conditions, a part of the fiber bundle has been damaged. Thus, the deposition temperature was decreased to 300 °C and the fibers were unaffected. In addition, during this process hydrochloric acid is formed as a byproduct which is a corrosive substance and affects the reactor and there was a chloride impurity in the coatings. Thus, aluminum trichloride precursor was replaced by trimethylalumium.
Alumina deposition onto carbon fibers using trimethylaluminum and water was carried out at a temperature of 77 °C. SEM images revealed that the fibers were unaffected and the coatings were uniform and conformal. Oxidation resistance of the carbon fibers was improved slightly after alumina deposition. Oxidation onset temperature of the uncoated fibers was about 630 °C. The resistance was linearly increased with the coating thickness (up to 660 °C) and getting saturated over a thickness of 120 nm. Titania coatings have been deposited using titanium tetrachloride and water. The physical appearances of the titania coatings were similar to the alumina coatings. The oxidation onset temperature of the titania coated carbon fibers was similar to the uncoated fibers but the rate of oxidation was decreased than the uncoated fibers. Two double layer coatings were deposited, alumina followed by titania (alumina/titania), and titania followed by alumina (titania/alumina). If the fibers were coated with the double layer of alumina/titania, they had almost same oxidation onset as alumina coated fibers but the rate of oxidation was decreased significantly compared to alumina coated fibers. This feature is independent of the thickness of the titania layers, at least in the regime investigated (50 nm alumina followed by 13 nm and 40 nm titania). On the other hand, the oxidation onset temperature of fibers coated with titania/alumina (20 nm titania /30 nm alumina) was approximately 750 °C. The fibers were burned completely when temperature was further increased to 900 °C and held another 60 minutes at 900 °C. This is significantly better than any other coating used in this dissertation.
ALD of titania and alumina in principle was known beforehand, this dissertation here applies this knowledge for the first time to endless fibers. Furthermore, this dissertation shows for the first time that one can deposit aluminum phosphate via ALD (planar surface as well as fibers). Aluminum phosphate might be special interest in the fiber coating because it is a rather soft material and thus might be used to obtain a weak coupling between fiber and matrix in composites. Aluminum phosphate was deposited using trimethylaluminum and triethylphosphate as precursors. Energy dispersive X-ray spectroscopy and solid state nuclear magnetic resonance spectra confirmed that the coating comprises aluminum phosphate (orthophosphate as well as other stoichiometries). Scanning electron microscopic images revealed that coatings are uniform and conformal. In cases of alumina and titania, it was observed that the coatings were delaminated from the ends of cut fibers and thus formed of clear steps. On the other hand, for aluminum phosphate coating it was observed that the border between coating and underlying fiber often being smeared out and thus formed an irregular line. It seems in case aluminum phosphate cohesion is weaker than adhesion, thus it might be act a weak interface between fiber and matrix. Alumina, titania, and double layer microtubes have been obtained after selective removal of the underlying carbon fibers. The carbon fibers were selectively removed via thermal oxidation in air at temperatures exceeding 550 °C. SEM and TEM images indicate that the inner side of the tube wall has the same morphology like the fibers. In addition, it was observed that the individual microtubes were separated from their neighbors and they had almost uniform wall thicknesses. The longest tubes had a length of 30 cm. / Das Hauptziel dieser Dissertation bestand darin nachzuweisen, dass die Atomlagenabscheidung (engl. atomic layer deposition (ALD)) auf „endlose“ Fasern angewendet werden kann. Es wurde ein Reaktor zur Atomlagenabscheidung gestaltet, der speziell für die Beschichtung meterlanger Faserbündel geeignet ist. Aluminiumoxid, Titanoxid, Doppelschichten aus Aluminiumoxid und Titanoxid sowie Aluminiumphosphat wurden mit Hilfe des selbstgebauten Reaktors auf Kohlefaserbündel abgeschieden. Rasterelektronenmikroskopische (REM) und transmissionselektronenmikroskopische (TEM) Aufnahmen zeigten, dass die Beschichtung auf den Fasern einheitlich und oberflächentreu war. Des Weiteren wurde eine gute Adhäsion zwischen Beschichtung und Fasern beobachtet. Das Prinzip der Beschichtung mit Titanoxid und Aluminiumoxid mit Hilfe der ALD war bereits vorher bekannt und im Rahmen dieser Dissertation jedoch erstmals auf "endlose" Fasern angewendet. Des Weiteren wird in dieser Dissertation erstmals gezeigt, dass es möglich ist, Aluminiumphosphat mittels ALD abzuscheiden (sowohl auf planaren Oberflächen als auch auf Fasern). Aluminiumphosphat könnte von besonderem Interesse in der Faserbeschichtung sein, da es ein relativ weiches Material ist und könnte daher als eine Art „schwacher“ Verbindung zwischen Faser und Matrix in Kompositen dienen. Die Oxidationsbeständigkeit von beschichten Kohlefasern wurde im Vergleich zu unbeschichteten Fasern bis zu einem gewissen Grad erhöht. Monoschichten von Aluminiumoxid und Titanoxid waren dafür wenig effektiv. Aluminiumphosphatbeschichtete Fasern waren deutlich besser geeignet als die beiden anderen. Eine Doppelschicht aus Titanoxid gefolgt von Aluminiumoxid verbesserte die Oxidationsbeständigkeit nochmals deutlich gegenüber allen anderen Beschichtungen, die in dieser Dissertation verwendet wurden. Mikroröhren aus Aluminiumoxid, Titanoxid und Doppelschichten wurden durch die selektive Entfernung der zugrunde liegenden Kohlefasern erhalten. Einzelne Mikroröhren waren von benachbarten Röhren getrennt und sie weisen eine nahezu einheitliche Wanddicke auf.
|
3 |
Atomic Layer Deposition onto FibersRoy, Amit Kumar 14 March 2012 (has links)
The main goal of this dissertation was to show that the principle of atomic layer deposition (ALD) can be applied to “endless” fibers. A reactor of atomic layer deposition has been designed, especially for coating depositions onto meter long bundles of fibers. Aluminum oxide (alumina), titanium oxide (titania), double layers of alumina and titania, as well as aluminium phosphate have been deposited onto bundles of carbon fibers using the home-built reactor. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images indicate that the coatings were uniform and conformal onto fiber surface. There was a good adhesion of the coatings to the fibers.
Alumina has been deposited using two separate aluminum sources (aluminum trichloride and trimethylaluminum), and water as a source of oxygen. In case of alumina deposition using aluminum trichloride and water, initial deposition temperature was 500 °C. In these conditions, a part of the fiber bundle has been damaged. Thus, the deposition temperature was decreased to 300 °C and the fibers were unaffected. In addition, during this process hydrochloric acid is formed as a byproduct which is a corrosive substance and affects the reactor and there was a chloride impurity in the coatings. Thus, aluminum trichloride precursor was replaced by trimethylalumium.
Alumina deposition onto carbon fibers using trimethylaluminum and water was carried out at a temperature of 77 °C. SEM images revealed that the fibers were unaffected and the coatings were uniform and conformal. Oxidation resistance of the carbon fibers was improved slightly after alumina deposition. Oxidation onset temperature of the uncoated fibers was about 630 °C. The resistance was linearly increased with the coating thickness (up to 660 °C) and getting saturated over a thickness of 120 nm. Titania coatings have been deposited using titanium tetrachloride and water. The physical appearances of the titania coatings were similar to the alumina coatings. The oxidation onset temperature of the titania coated carbon fibers was similar to the uncoated fibers but the rate of oxidation was decreased than the uncoated fibers. Two double layer coatings were deposited, alumina followed by titania (alumina/titania), and titania followed by alumina (titania/alumina). If the fibers were coated with the double layer of alumina/titania, they had almost same oxidation onset as alumina coated fibers but the rate of oxidation was decreased significantly compared to alumina coated fibers. This feature is independent of the thickness of the titania layers, at least in the regime investigated (50 nm alumina followed by 13 nm and 40 nm titania). On the other hand, the oxidation onset temperature of fibers coated with titania/alumina (20 nm titania /30 nm alumina) was approximately 750 °C. The fibers were burned completely when temperature was further increased to 900 °C and held another 60 minutes at 900 °C. This is significantly better than any other coating used in this dissertation.
ALD of titania and alumina in principle was known beforehand, this dissertation here applies this knowledge for the first time to endless fibers. Furthermore, this dissertation shows for the first time that one can deposit aluminum phosphate via ALD (planar surface as well as fibers). Aluminum phosphate might be special interest in the fiber coating because it is a rather soft material and thus might be used to obtain a weak coupling between fiber and matrix in composites. Aluminum phosphate was deposited using trimethylaluminum and triethylphosphate as precursors. Energy dispersive X-ray spectroscopy and solid state nuclear magnetic resonance spectra confirmed that the coating comprises aluminum phosphate (orthophosphate as well as other stoichiometries). Scanning electron microscopic images revealed that coatings are uniform and conformal. In cases of alumina and titania, it was observed that the coatings were delaminated from the ends of cut fibers and thus formed of clear steps. On the other hand, for aluminum phosphate coating it was observed that the border between coating and underlying fiber often being smeared out and thus formed an irregular line. It seems in case aluminum phosphate cohesion is weaker than adhesion, thus it might be act a weak interface between fiber and matrix. Alumina, titania, and double layer microtubes have been obtained after selective removal of the underlying carbon fibers. The carbon fibers were selectively removed via thermal oxidation in air at temperatures exceeding 550 °C. SEM and TEM images indicate that the inner side of the tube wall has the same morphology like the fibers. In addition, it was observed that the individual microtubes were separated from their neighbors and they had almost uniform wall thicknesses. The longest tubes had a length of 30 cm.:Bibliographische Beschreibung und Referat 2
Abstract 4
List of abbreviations 10
1. General introduction and outline of this dissertation 12
1.1 References 20
2. Atomic layer deposition: Process and reactor 25
2.1 Introduction 25
2.2 Principle of atomic layer deposition 26
2.3 Materials and methods 29
2.3.1 Precursors 29
2.3.2 Precursors transportation 31
2.3.3 Carrier and purge gas 32
2.3.4 ALD reactors 32
2.4 Flow-Type ALD reactor for fiber coating 33
2.5 Conclusion 35
2.6 References 35
3. Single layer oxide coatings 38
3.1 State of the art 38
3.2 Alumina coating using non-flammable precursors 39
3.2.1 Introduction 39
3.2.Result and discussion 39
3.3 Alumina coating using organometallic precursor 46
3.2.1 Introduction 46
3.2.2 Results and discussion 46
3.4 Titania coating using titanium tetrachloride and water 59
3.4.1 Introduction 59
3.4.2 Results and discussion 59
3.5 Experimental Part 67
3.5.1 General experiments 67
3.5.2 Alumina coating using aluminum chloride and water 69
3.5.3 Alumina coating using trimethylalumium and water 69
3.5.4 Titania coating 72
3.6 Conclusions 72
3.7 References 74
4. Coating thickness and morphology 78
4.1 Introduction 78
4.2 Results and discussion 80
4.2.1 Purge time 15 s 81
4.2.2 Purge time 30 s 85
4.2.3 Purge time 45 s to 100 s 85
4.3 Experimental part 88
4.4 Conclusions 89
4.5 References 89
5. Alumina and titania double layer coatings 91
5.1 Introduction 91
5.2 Results and discussion 92
5.3 Experimental part 102
5.4 Conclusions 103
5.5 References 103
6. Atomic layer deposition of aluminum phosphate 105
6.1 Introduction 105
6.2 Results and discussion 106
6.3 Experimental part 113
6.4 Conclusions 114
6.5 References 115
7. Alumina microtubes 117
7.1 Introduction 117
7.2 Results and discussion 118
7.2.1 Fibers before coating deposition 118
7.2.2 Coatings on the carbon fibers 118
7.2.3 Microtubes 121
7.3 Experimental part 127
7.4 Conclusions 128
7.5 References 128
8. Conclusions 131
Acknowledgements 136
Curriculum Vitae 138
Selbständigkeitserklärung 142 / Das Hauptziel dieser Dissertation bestand darin nachzuweisen, dass die Atomlagenabscheidung (engl. atomic layer deposition (ALD)) auf „endlose“ Fasern angewendet werden kann. Es wurde ein Reaktor zur Atomlagenabscheidung gestaltet, der speziell für die Beschichtung meterlanger Faserbündel geeignet ist. Aluminiumoxid, Titanoxid, Doppelschichten aus Aluminiumoxid und Titanoxid sowie Aluminiumphosphat wurden mit Hilfe des selbstgebauten Reaktors auf Kohlefaserbündel abgeschieden. Rasterelektronenmikroskopische (REM) und transmissionselektronenmikroskopische (TEM) Aufnahmen zeigten, dass die Beschichtung auf den Fasern einheitlich und oberflächentreu war. Des Weiteren wurde eine gute Adhäsion zwischen Beschichtung und Fasern beobachtet. Das Prinzip der Beschichtung mit Titanoxid und Aluminiumoxid mit Hilfe der ALD war bereits vorher bekannt und im Rahmen dieser Dissertation jedoch erstmals auf "endlose" Fasern angewendet. Des Weiteren wird in dieser Dissertation erstmals gezeigt, dass es möglich ist, Aluminiumphosphat mittels ALD abzuscheiden (sowohl auf planaren Oberflächen als auch auf Fasern). Aluminiumphosphat könnte von besonderem Interesse in der Faserbeschichtung sein, da es ein relativ weiches Material ist und könnte daher als eine Art „schwacher“ Verbindung zwischen Faser und Matrix in Kompositen dienen. Die Oxidationsbeständigkeit von beschichten Kohlefasern wurde im Vergleich zu unbeschichteten Fasern bis zu einem gewissen Grad erhöht. Monoschichten von Aluminiumoxid und Titanoxid waren dafür wenig effektiv. Aluminiumphosphatbeschichtete Fasern waren deutlich besser geeignet als die beiden anderen. Eine Doppelschicht aus Titanoxid gefolgt von Aluminiumoxid verbesserte die Oxidationsbeständigkeit nochmals deutlich gegenüber allen anderen Beschichtungen, die in dieser Dissertation verwendet wurden. Mikroröhren aus Aluminiumoxid, Titanoxid und Doppelschichten wurden durch die selektive Entfernung der zugrunde liegenden Kohlefasern erhalten. Einzelne Mikroröhren waren von benachbarten Röhren getrennt und sie weisen eine nahezu einheitliche Wanddicke auf.:Bibliographische Beschreibung und Referat 2
Abstract 4
List of abbreviations 10
1. General introduction and outline of this dissertation 12
1.1 References 20
2. Atomic layer deposition: Process and reactor 25
2.1 Introduction 25
2.2 Principle of atomic layer deposition 26
2.3 Materials and methods 29
2.3.1 Precursors 29
2.3.2 Precursors transportation 31
2.3.3 Carrier and purge gas 32
2.3.4 ALD reactors 32
2.4 Flow-Type ALD reactor for fiber coating 33
2.5 Conclusion 35
2.6 References 35
3. Single layer oxide coatings 38
3.1 State of the art 38
3.2 Alumina coating using non-flammable precursors 39
3.2.1 Introduction 39
3.2.Result and discussion 39
3.3 Alumina coating using organometallic precursor 46
3.2.1 Introduction 46
3.2.2 Results and discussion 46
3.4 Titania coating using titanium tetrachloride and water 59
3.4.1 Introduction 59
3.4.2 Results and discussion 59
3.5 Experimental Part 67
3.5.1 General experiments 67
3.5.2 Alumina coating using aluminum chloride and water 69
3.5.3 Alumina coating using trimethylalumium and water 69
3.5.4 Titania coating 72
3.6 Conclusions 72
3.7 References 74
4. Coating thickness and morphology 78
4.1 Introduction 78
4.2 Results and discussion 80
4.2.1 Purge time 15 s 81
4.2.2 Purge time 30 s 85
4.2.3 Purge time 45 s to 100 s 85
4.3 Experimental part 88
4.4 Conclusions 89
4.5 References 89
5. Alumina and titania double layer coatings 91
5.1 Introduction 91
5.2 Results and discussion 92
5.3 Experimental part 102
5.4 Conclusions 103
5.5 References 103
6. Atomic layer deposition of aluminum phosphate 105
6.1 Introduction 105
6.2 Results and discussion 106
6.3 Experimental part 113
6.4 Conclusions 114
6.5 References 115
7. Alumina microtubes 117
7.1 Introduction 117
7.2 Results and discussion 118
7.2.1 Fibers before coating deposition 118
7.2.2 Coatings on the carbon fibers 118
7.2.3 Microtubes 121
7.3 Experimental part 127
7.4 Conclusions 128
7.5 References 128
8. Conclusions 131
Acknowledgements 136
Curriculum Vitae 138
Selbständigkeitserklärung 142
|
Page generated in 0.0861 seconds