• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 9
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 14
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 8
  • 8
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Système de recombinaison Xer chez Staphylococcus aureus

Gustinelli, Alexandra 08 1900 (has links)
Le système de recombinaison Xer est impliqué dans la monomerisation des réplicons bactériens, comme les plasmides et les chromosomes, dans une grande variété de bactéries. Ce système est un système de recombinaison site-spécifique composé de deux tyrosine recombinases, soit XerC et XerD. Ils agissent ensemble afin de convertir les chromosomes dimériques en monomères en agissant à un site spécifique près du terminus de la réplication, appelé le site dif. Les gènes Xer et leur site d’action sont identifiés dans plusieurs bactéries gram positives et gram négatives. Staphylococcus aureus représente une bactérie gram positive qui contient un système XerCD/dif. Elle est impliqué dans plusieurs maladies humaines, tels que des infections cutanées, des gastroentérites, et le syndrome de choc toxique, pour en nommer quelques unes. Bien que les gènes codant les protéines XerC et XerD ont été identifiés, il y a beaucoup d’inconnu sur leur mode d’action au site dif. Des mutations dans XerC ont été obtenues, mais aucune dans XerD, suggérant que ce gène pourrait être essentiel pour cet organisme. Les études présentées dans ce mémoire ont permis de commencer à mieux caractériser XerD de S. aureus, en séquençant le gène et en faisant des tests de liaison à l’ADN. Elles ont montré que la recombinase XerD se lie au site dif d’Eschericia coli seul et de façon coopérative avec la recombinase XerC d’E. coli. XerD de S. aureus est, aussi, efficace dans la complémentation de XerD muté d’E. coli dans la réaction de recombinaison chromosomique. Cependant, elle ne démontre pas cette même capacité de complémentation lors de la recombinaison plasmidique aux sites cer. / The Xer recombination system is involved in the monomerisation of bacterial replicons, such as plasmids and chromosomes, in a wide variety of bacteria. This system is a site-specific recombination system comprised of two tyrosine recombinases, XerC and XerD, which act in concert to convert dimeric chromosomes to monomers by acting at a specific site near the terminus of replication called the dif site. Xer genes and their site of action have been identified in many gram positive and gram negative bacteria. Staphylococcus aureus represents a gram positive bacterium containing a XerCD/dif system. It is a bacteria implicated in many human diseases, such as skin infections, gastroenteritis and toxic shock syndrome, to name a few. Although the genes encoding the XerC and XerD proteins have been identified, not much is known about their mode of action on the dif site. Mutations in xerC have been obtained, but none in xerD, suggesting that this gene may be essential for this organism. The work presented in this paper has allowed us to better understand the XerD protein of S. aureus, not only in the sequencing of the xerD gene but also in the performing of DNA binding assays. It has been shown that XerD binds to the dif site of E. coli, not only alone but also in cooperativity with E. coli XerC. S. aureus XerD is also capable of complementing the mutated XerD protein in E. coli when it comes to chromosomal recombination. However, it does not demonstrate this same ability to complement XerD regarding recombination at the plasmidic cer sites.
12

Le système de recombinaison site-spécifique dif/Xer de Campylobacter jejuni

Rezoug, Zoulikha 12 1900 (has links)
Chez les bactéries à chromosome circulaire, la réplication peut engendrer des dimères que le système de recombinaison site-spécifique dif/Xer résout en monomères afin que la ségrégation des chromosomes fils et la division cellulaire se fassent normalement. Ses composants sont une ou deux tyrosines recombinases de type Xer qui agissent à un site de recombinaison spécifique, dif, avec l’aide de la translocase FtsK qui mobilise l’ADN au septum avant la recombinaison. Ce système a été d’abord identifié et largement caractérisé chez Escherichia coli mais il a également été caractérisé chez de nombreuses bactéries à Gram négatif et positif avec des variantes telles que les systèmes à une seule recombinase comme difSL/XerS chez Streptococcus sp et Lactococcus sp. Des études bio-informatiques ont suggéré l’existence d’autres systèmes à une seule recombinase chez un sous-groupe d’ε-protéobactéries pathogènes, dont Campylobacter jejuni et Helicobacter pylori. Les acteurs de ce nouveau système sont XerH et difH. Dans ce mémoire, les premières recherches in vitro sur ce système sont présentées. La caractérisation de la recombinase XerH de C. jejuni a été entamée à l’aide du séquençage de son gène et de tests de liaison et de clivage de l’ADN. Ces études ont montré que XerH pouvait se lier au site difSL de S. suis de manière non-coopérative : que XerH peut se lier à des demi-sites de difSL mais qu’elle ne pouvait, dans les conditions de l’étude effectuer de clivage sur difSL. Des recherches in silico ont aussi permis de faire des prédictions sur FtsK de C. jejuni. / DNA replication can form dimers in bacteria harboring a circular chromosome. The dif/Xer recombination system resolves monomers them so that chromosome segregation and cell division take place normally. This system is composed of one or two tyrosine recombinases that act at a specific recombination site, dif, with the help of the FtsK translocase that mobilises DNA to the septum before recombination. The Xer system has been first identified and widely characterized in Escherichia coli where XerC and XerD are the recombinases. The system has been found and studied in many other Gram negative and positive bacteria. A different form, carrying a single recombinase acting on an atypical site, has been identified in Streptococci and Lactococci, difSL/XerS. In silico studies suggested the existence of other single recombinase systems in a sub-group of pathogenic ε-proteobacteriasuch as Campylobacter jejuni and Helicobacter pylori. The components of this system were identified as XerH and difH. In this thesis, the first in vitro studies made on this system are presented. The characterization of the XerH recombinase of C. jejuni started with the sequencing of its gene and with the DNA binding and cleavage assays. These studies showed that XerH could bind difSL of S. suis non-cooperatively, that it could bind difSL half-sites and that it was unable to perform cleavage on difSL. Also, in silico comparisons permitted predictions on FtsK of C. jejuni.
13

Les systèmes Xer à une seule recombinase

Leroux, Maxime 11 1900 (has links)
Les dimères chromosomiques se produisant lors de la réparation de chromosomes circulaires peuvent être dommageables pour les bactéries en bloquant la ségrégation des chromosomes et le bon déroulement de la division cellulaire. Pour remédier à ce problème, les bactéries utilisent le système Xer de monomérisation des chromosomes. Celui-ci est composé de deux tyrosine recombinases, XerC et XerD, qui vont agir au niveau du site dif et procéder à une recombinaison qui aura pour effet de séparer les deux copies de l’ADN. Le site dif est une séquence d’ADN où deux répétitions inversées imparfaites séparées par six paires de bases permettent la liaison de chacune des recombinases. Cette recombinaison est régulée à l’aide de FtsK, une protéine essentielle de l’appareil de division. Ce système a été étudié en profondeur chez Escherichia coli et a aussi été caractérisée dans une multitude d’espèces variées, par exemple Bacillus subtilis. Mais dans certaines espèces du groupe des Streptococcus, des études ont été en mesure d’identifier une seule recombinase, XerS, agissant au niveau d’un site atypique nommée difSL. Peu de temps après, un second système utilisant une seule recombinase a été identifié chez un groupe des epsilon-protéobactéries. La recombinase fut nommée XerH et le site de recombinaison, plus similaire à difSL qu’au site dif classique, difH. Dans cette thèse, des résultats d’expériences in vitro sur les deux systèmes sont présentés, ainsi que certains résultats in vivo. Il est démontré que XerS est en mesure de se lier de façon coopérative à difSL et que cette liaison est asymétrique, puisque XerS est capable de se lier à la moitié gauche du site prise individuellement mais non à la moitié droite. Le clivage par XerS est aussi asymétrique, étant plus efficace au niveau du brin inférieur. Pour ce qui est de XerH, la liaison à difH est beaucoup moins coopérative et n’a pas la même asymétrie. Par contre, le clivage est asymétrique lui aussi. La comparaison de ces deux systèmes montrent qu’ils ne sont pas homologues et que les systèmes Xer à seule recombinase existent sous plusieurs versions. Ces résultats représentent la première découverte d’un espaceur de 11 paires de bases chez les tyrosine recombinases ainsi que la première étude in vitro sur XerH. / The chromosome dimers produced during the repair of circular chromosomes can be harmful to bacteria by blocking the segregation of the chromosome and cell division. To overcome this problem, bacteria use the Xer system for the monomerisation of chromosome dimers. It has two components, XerC and XerD, which act on the dif site and complete a recombination that will lead to the separation of the two copies of the DNA. The dif site is a DNA sequence where two imperfect inverted repeats separated by six base pairs allow the binding of each recombinase. This recombination is regulated by the protein FtsK, an essential member of the cell division machinery. The Xer system has been well studied in Escherichia coli and has also been characterized in a variety of species, for example Bacillus subtilis. Furthermore, in certain species of Streptococcus, studies have identified only a single recombinase, XerS, which acts on an atypical site named difSL in order to monomerize dimeric chromosomes. Not long after, a second system using a single recombinase was identified in a group of epsilon-proteobacteria. This recombinase was named XerH and the recombination site, difH, was found to more similar to difSL than to the classical dif sites. In this thesis, results from in vitro experiments on both systems are presented, as well as some results from in vivo experiments. We show that XerS is capable of binding cooperatively to difSL and that this binding is asymmetrical. This is because XerS is able to bind to the left half of the site but not to the right half when they are separated. The cleavage by XerS is also asymmetrical, as it is more efficient on the bottom strand. As for XerH, its binding to difH is much less cooperative and doesn’t have the same asymmetry. But the cleavage is also asymmetrical like the one seen in XerS. Comparing the two systems show that they are not homologuous and that more than one version of Xer systems using a single recombinase exists. These results represent the first discovery of an 11 bases pairs spacer for tyrosine recombinase. It is also the first in vitro studies of XerH.
14

Caractérisation moléculaire du système de recombinaison XerH/difH chez Campylobacter jejuni

Benmohamed, Amal 08 1900 (has links)
Chez les bactéries à chromosomes circulaires, le crossing-over introduit par la recombinaison homologue peut conduire à des échanges de chromatides soeurs. Des nombres impairs de ces échanges aboutissent à la dimérisation des deux chromatides nouvellement répliquées compromettant ainsi leur ségrégation. Par conséquent, la plupart des bactéries utilisent le système de recombinaison spécifique de site Xer pour convertir les dimères de chromosomes et de plasmides en monomères stables. Ce système comporte deux recombinases de la famille Tyrosine recombinase, XerC et XerD, agissant sur le site dif. Cependant, quelques ε-protéobactéries n’ont besoin que d'une seule recombinase XerH agissant sur un site difH. Il parait intéressant d’étudier le système de recombinaison XerH de Campylobacter jejuni, surtout que l'augmentation spectaculaire de l'incidence de campylobactériose est alarmante. Cette étude vise à mieux comprendre comment la protéine XerH catalyse la réaction de recombinaison au niveau du site difH en mettant en évidence les séquences indispensables pour la liaison et le clivage. Grâce à ces expériences, nous avons pu confirmer que XerH est capable de se lier à la séquence entière difH; XerH est capable de cliver les deux brins supérieurs et inférieurs de difH avec une réaction plus efficace au niveau du brin inférieur; les nucléotides conservés du site de liaison sont indispensables pour la réaction de liaison; la modification de la longueur de l’espaceur améliore la réaction de liaison et de clivage et les modifications apportées au site de clivage prédit ont aboli la réaction de liaison et affecté la réaction de clivage au niveau du brin supérieur et inférieur du site difH. Ces expériences aideront à comprendre comment la recombinase XerH/difH contrôle la résolution des dimères chromosomiques chez Campylobacter jejuni en identifiant les séquences et les facteurs indispensables pour qu’un certain système soit fiable. Notre étude représente un pas vers l’avant pour comprendre un mécanisme important chez un agent pathogène ayant un grand impact sur la santé publique. / In bacteria with circular chromosomes, cross-over induced by homologous recombination can lead to sister chromatid exchanges, odd numbers of these exchanges result in dimerization of the two newly replicated chromatids compromising their segregation. Therefore, most bacteria use the Xer site-specific recombination system to convert chromosomal and plasmid dimers into stable monomers. This system involves two recombinases of the Tyrosine recombinase family, XerC and XerD, acting at the dif site. However, some ε-proteobacteria require only one XerH recombinase acting on a difH site. It seems interesting to study the XerH recombination system of Campylobacter jejuni, especially since the dramatic increase in the incidence of campylobacteriosis is alarming. This study aims to better understand how the XerH protein catalyzes the recombination reaction at the difH site by identifying the sequences required for binding as well as the factors regulating this reaction. As a result of these experiments, we were able to confirm that XerH is able to bind to the entire difH sequence; it is able to cleave both the top and bottom strands of difH with a more efficient reaction at the bottom strand; The conserved nucleotides in the binding site are essential for the binding reaction, modification of the spacer length improves the binding and cleavage reaction, and modifications in the predicted cleavage site abolished the binding reaction and affected the cleavage reaction at both the top and bottom strands of the difH site.. These experiments will help to understand how the XerH/difH recombinase controls the resolution of chromosomal dimers in Campylobacter jejuni by identifying the essential sequences and factors required for a certain system to be reliable. Our study represents a step forward in understanding an important mechanism in a pathogen with great impact on public health.
15

The role of Caulobacter crescentus XerC and XerD recombinases in site-specific recombination

Liu, Hua 12 1900 (has links)
XerC et XerD, deux recombinases impliquées dans la recombinaison site spécifique, résolvent les multimères d’ADN en monomères. Cette réaction se produit au niveau du site dif du chromosome, et nécessite le domaine C-terminale de la protéine de division cellulaire FtsK. Caulobacter crescentus est une bactérie aquatique de type Gram-négative qui se retrouve dans plusieurs environnements. Elle présente un cycle cellulaire asymétrique avec deux types de cellules distinctes. Cette propriété peut être utilisée pour synchroniser la croissance d’une population bactérienne pour permettre l’étude de l’expression de gènes à travers le temps et les liens entre le cycle cellulaire et le développement de la bactérie. La liaison à l’ADN et la capacité de former des complexes covalents (phosphotyrosyl) avec le site dif de C. crescentus (ccdif) ont été testé pour les recombinases de C. crescentus (ccXerC et ccXerD). Les deux recombinases ont eu une meilleure liaison au demi-site gauche de ccdif et sont incapable d’effectuer une liaison coopérative, contrairement à ce qui se produit au niveau du site dif de E. coli. La formation de complexes covalents a été testé en utilisant des «substrats suicides avec bris» marqués à la fluorescence ainsi que des protéines de fusion (marquées ou non à la fluorescence). Des complexes ADN-protéines résistants à la chaleur et au SDS ont été observé lors de la réaction de ccXerC et ccXerD de type sauvage avec ccdif, mais pas lors de la réaction de mutants avec le même ADN. Des complexes covalents phosphotyrosine sont formés de façon plus efficace sur les substrats suicides avec un bris au niveau du brin supérieur que ceux ayant un bris au niveau du brin inférieur. Dans les deux cas, c’est ccXerC qui est resté lié de façon covalente à l’ADN de ccdif. / In most bacteria, the chromosomal dimer resolution process is mediated by two tyrosine recombinases, XerC and XerD, which bind cooperatively and perform the recombination reaction at the dif site near the terminus of replication. This reaction also requires the C-terminal domain of the cell division protein FtsK. Caulobacter crescentus is an aquatic Gram-negative bacterium found in various environments. This bacterium has an asymmetric cell cycle which can be used to synchronize cell growth in order to study the temporal expression of a gene and the interconnection between the cell cycle and development. The binding activity and the formation of phosphotyrosyl complex of the C. crescentus recombinases, ccXerC and ccXerD, were tested on the C. crescentus dif (ccdif) site. Both ccXerC and ccXerD bound preferentially to the left half-site of ccdif and showed reduced cooperative binding, unlike what was found with the E. coli dif site. Covalent complex formation activity was tested by using fluorescently labelled linear “nicked suicide substrates” and labelled proteins. Heat and SDS-resistant protein-DNA complexes were formed when both wild-type ccXerC and ccXerD reacted with ccdif but not in the presence of active-site tyrosine mutant proteins. Phosphotyrosine complexes formed on the top-nicked suicide substrate were found to be more efficient than on the bottom-nicked suicide substrates and surprisingly ccXerC remained bound to both top and bottom-nicked ccdif suicide substrates.
16

La cohésion des chromatides sœurs chez Escherichia coli / Sister chromatid cohesion in Escherichia coli

Gigant, Emmanuelle 30 November 2012 (has links)
Chez les bactéries, la ségrégation du chromosome est initiée durant la phase de réplication. Des expériences de time lapse, utilisées pour observer que la dynamique des loci frères durant le cycle cellulaire, montrent que, chez Escherichia coli, les régions sœurs restent colocalisées pour une période significative dans les régions des macrodomaines du chromosome et pour une courte période dans les régions non-structurées. Nous nous sommes posés la question suivante: est ce que l’étape de colocalisation révèle une réelle cohésion entre les chromatides sœurs ? Pour y répondre, nous avons développé un outil génétique, alternatif aux outils de biologie cellulaire, permettant de mesurer la distance entre les chromatides sœurs de manière directe. La fréquence de recombinaison intermoléculaire médiée par la recombinase Cre entre les sites loxP positionnés sur les chromatides sœurs est mesurée pour différentes positions. De cette fréquence, nous avons pu déduire la proximité entre les chromatides sœurs. Nous révélons que les loci frères restent proche l’un de l’autre pour une courte période après la réplication. Nous appelons cette étape la cohésion moléculaire, celle-ci est dépendante du locus considéré. Nous montrons que les facteurs qui favorisent la colocalisation des foci frères n’augmentent pas nécessairement l’habilité des loci frères à recombiner. En effet, la protéine MatP, un acteur de la colocalisation des macrodomaines Ter, n’affecte pas la cohésion entre les deux copies de cette région. La Topoisomérase IV est un facteur essentiel à la ségrégation des chromosomes. En son absence, les chromosomes ne peuvent se ségréger et restent colocalisés dans la cellule. Nous révélons par le test de recombinaison que l’absence de Topoisométase IV dans les cellules provoque une augmentation des interactions entre chromatides sœurs. Au final, nous avons montré que l’étape de cohésion est différente de la colocalisation, que les mécanismes moléculaires diffèrent d’une étape à l’autre et que les liens de précaténation moduleraient la cohésion post-réplicative entre chromatides sœurs. / In bacteria, the segregation of the chromosome is initiated during the replication phase. Time lapse experiments, used to watch the dynamic of loci during cell cycle, showed, in Escherichia coli, that the sister loci remain colocalized for a significant amount of time in the macrodomain regions of the chromosome and for shorter period in the Non Structured regions. We asked the following question: does this colocalization step reveal a real cohesion between the sister chromatids? To answer, we have developed a genetic tool, alternative to cell biology tools, to measure the distance between sister chromatids directly. The frequency of intermolecular recombination mediated by Cre recombinase loxP sites located on sister chromatids was measured for various loci. From this frequency we were able to deduce the proximity of sister chromatids. We revealed that sister loci remained in close proximity for a short period following replication. We called this step molecular cohesion, it is dependent on the considered locus. We showed that factors that promote colocalisation of sister foci do not necessarily increase the ability of sister loci to recombine. Indeed, the MatP protein, an actor of macrodomain Ter colocalisation, does not affect the cohesion between the two copies of this region. The TopoIV is essential for the segregation of chromosomes. In its absence, the chromosomes can not segregate and remain colocalized in the cell. We reveal by recombinaison assy that the absence of Topoisomerase IV revealed an increase of interactions between sister chromatids. To conclude, we have shown that the cohesion step is different from the colocalisation step, the molecular mechanisms differ from one stage to another and précaténation links take part in the post-replicative cohesion between sister chromatids
17

The role of Caulobacter crescentus XerC and XerD recombinases in site-specific recombination

Liu, Hua 12 1900 (has links)
XerC et XerD, deux recombinases impliquées dans la recombinaison site spécifique, résolvent les multimères d’ADN en monomères. Cette réaction se produit au niveau du site dif du chromosome, et nécessite le domaine C-terminale de la protéine de division cellulaire FtsK. Caulobacter crescentus est une bactérie aquatique de type Gram-négative qui se retrouve dans plusieurs environnements. Elle présente un cycle cellulaire asymétrique avec deux types de cellules distinctes. Cette propriété peut être utilisée pour synchroniser la croissance d’une population bactérienne pour permettre l’étude de l’expression de gènes à travers le temps et les liens entre le cycle cellulaire et le développement de la bactérie. La liaison à l’ADN et la capacité de former des complexes covalents (phosphotyrosyl) avec le site dif de C. crescentus (ccdif) ont été testé pour les recombinases de C. crescentus (ccXerC et ccXerD). Les deux recombinases ont eu une meilleure liaison au demi-site gauche de ccdif et sont incapable d’effectuer une liaison coopérative, contrairement à ce qui se produit au niveau du site dif de E. coli. La formation de complexes covalents a été testé en utilisant des «substrats suicides avec bris» marqués à la fluorescence ainsi que des protéines de fusion (marquées ou non à la fluorescence). Des complexes ADN-protéines résistants à la chaleur et au SDS ont été observé lors de la réaction de ccXerC et ccXerD de type sauvage avec ccdif, mais pas lors de la réaction de mutants avec le même ADN. Des complexes covalents phosphotyrosine sont formés de façon plus efficace sur les substrats suicides avec un bris au niveau du brin supérieur que ceux ayant un bris au niveau du brin inférieur. Dans les deux cas, c’est ccXerC qui est resté lié de façon covalente à l’ADN de ccdif. / In most bacteria, the chromosomal dimer resolution process is mediated by two tyrosine recombinases, XerC and XerD, which bind cooperatively and perform the recombination reaction at the dif site near the terminus of replication. This reaction also requires the C-terminal domain of the cell division protein FtsK. Caulobacter crescentus is an aquatic Gram-negative bacterium found in various environments. This bacterium has an asymmetric cell cycle which can be used to synchronize cell growth in order to study the temporal expression of a gene and the interconnection between the cell cycle and development. The binding activity and the formation of phosphotyrosyl complex of the C. crescentus recombinases, ccXerC and ccXerD, were tested on the C. crescentus dif (ccdif) site. Both ccXerC and ccXerD bound preferentially to the left half-site of ccdif and showed reduced cooperative binding, unlike what was found with the E. coli dif site. Covalent complex formation activity was tested by using fluorescently labelled linear “nicked suicide substrates” and labelled proteins. Heat and SDS-resistant protein-DNA complexes were formed when both wild-type ccXerC and ccXerD reacted with ccdif but not in the presence of active-site tyrosine mutant proteins. Phosphotyrosine complexes formed on the top-nicked suicide substrate were found to be more efficient than on the bottom-nicked suicide substrates and surprisingly ccXerC remained bound to both top and bottom-nicked ccdif suicide substrates.
18

Rôle des facteurs de l’hôte dans le maintien des prophages chez les entérobactéries / Host factors involvement in prophage maintenance in Enterobacteriaceae

Delannoy, Maëlle 15 December 2016 (has links)
Les prophages sont des vecteurs majeurs de l’évolution des génomes bactériens et ont des rôles divers dans le processus adaptatif de leurs hôtes et peuvent leur apporter un avantage sélectif. Au cours de l’évolution, certains gènes prophagiques peuvent être perdus, notamment ceux codant pour des protéines du cycle lytique. Cependant, alors que certains de ces prophages défectifs sont capables de s’exciser, ils sont maintenus dans le génome de l’hôte, suggérant une pression sélective pour les conserver. C’est le cas du prophage défectif KplE1 chez E. coli K12. Dans l’équipe, des travaux ont mis en évidence que le maintien en lysogénie de différents prophages était sous le contrôle du terminateur de la transcription bactérien Rho. Afin d’identifier de nouveaux facteurs de l’hôte impliqués dans le maintien des prophages, j’ai développé un crible génétique qui m’a permis d’identifier plusieurs candidats impliqués dans le métabolisme général, la détoxification du NO ou qui appartiennent à un autre prophage défectif. Mon travail a été de discriminer lesquels de ces candidats jouaient un rôle significatif dans le maintien des prophages. Sur les trois gènes impliqués dans la détoxification du NO, seule l’expression de norV ou norW permet le maintien de KplE1. NorV réduit le NO et cette réduction nécessite l’utilisation d’un électron généré par l’oxydation du NADH par NorW. J’ai pu également montrer que l’expression du gène norV permettait le maintien d’un autre prophage fonctionnel (HK620) partageant le même module de recombinaison spécifique de site que KplE1. L’ensemble de mes résultats montre qu’il existe un lien co-évolutif important entre les prophages et leurs hôtes. / Prophages play recognized roles in their host genomes evolution and adaptation to variable ecosystems. They can provide to their host selective advantages that increase their competitiveness. Upon evolution, some prophage genes can be lost, especially those coding for lytic cycle capacity. While some of the defective prophages are perfectly competent for excision, they prove to be maintained in bacterial genomes, suggesting the involvement of a selective pressure. This is the case for our defective prophage model: KplE1 in E. coli K12. Previous work in our laboratory demonstrated that lysogeny maintenance of various prophages was controlled by Rho which is the bacterial transcription termination factor. In order to identify new host factors involved in prophage maintenance, I developed a genetic screen. This screen allowed me to identify candidate genes involved in bacterial general metabolism, in NO detoxification and also some genes that belong to another defective prophage. I determined which candidate genes actually played a role in KplE1 maintenance. Among the three genes involved in NO detoxification, I showed that norV or norW individual expression allowed KplE1 maintenance. NorV reduces NO and this reduction needs an electron produced by NorW NADH oxidation. I also showed that norV expression allowed the maintenance of another functional prophage (HK620) that shares the same site specific recombination module as KplE1. Together, my results illustrate the coevolution between prophages and their hosts.
19

Molecular characterization of XerS/difSL site-specific recombination system in Streptococcus suis

Castillo Martinez, Fabio Andres 04 1900 (has links)
L'état circulaire du chromosome bactérien pose un problème particulier lors de la réplication. Un nombre impair d'événements de recombinaison homologue donne des chromosomes dimères concaténés qui ne peuvent pas être divisés en cellules filles. Pour résoudre ce problème, les bactéries ont mis au point un mécanisme de résolution des dimères basé sur un système de recombinaison spécifique au site. Ceci est effectué par le système Xer/dif. Dans ce système, les protéines Xer effectuent une réaction de recombinaison dans le site dif au niveau du septum cellulaire immédiatement avant la division cellulaire. Dans la plupart des bactéries, cette réaction est effectuée par deux recombinases, XerC et XerD. Cependant, Streptococcus suis, un agent pathogène zoonotique important utilise un système de recombinaison différent, constitué d'une seule enzyme recombinase appelée XerS, qui catalyse la réaction de recombinaison dans un site dif non conventionnel. Pour caractériser le mode de clivage de XerS, des expériences EMSA ont été réalisées en utilisant des fragments de PCR marqués par HEX et des "suicide substrates". Nos données suggèrent que 1.) XerS est capable de lier la séquence entière de difSL; 2.) XerS lie plus efficacement le côté gauche des mutants difSL incomplets que le côté droit; 3.) XerS coupe les brins supérieur et inférieur du site difSL, avec une réaction plus efficace au bas. 4.) Modifications des nucléotides de la région la plus externe ou de la région centrale changent les préférences de clivage. 5.) XerS n'a montré aucune activité spécifique sur un autre site dif non conventionnel des Firmicutes, 6.) XerS interagit avec la sous-unité FtsK-y. L'ensemble des résultats présentés permet de mieux comprendre le fonctionnement de la recombinaison XerS dans le système de recombinase unique de Streptococcus et comment cette recombinaison est régulée par des facteurs de l'hôte. / The circular state of the bacterial chromosome presents a specific problem during replication. An odd number of homologous recombination events results in concatenated dimer chromosomes that cannot be partitioned into daughter cells. To solve this problem, bacteria have developed a mechanism of dimer resolution based on site-specific recombination system. This is performed by the Xer/dif system. In this system, the Xer proteins perform a recombination reaction in the dif site at the cell septum immediately prior to cell division. In most bacteria this reaction is performed by two recombinases, XerC and XerD. However, an important zoonotic pathogen; Streptococcus suis harbors a different recombination system, composed by a single recombinase enzyme called XerS, that catalyzes the recombination reaction in an unconventional dif site; difSL. A region characterized by two imperfect inverted repeat regions that flank a central region of 11 bp.To characterize the mode of cleavage of XerS, EMSA experiments were performed by using HEX-labelled PCR fragments and “nicked suicide substrates”. Our data suggests that; 1.) XerS is able to bind the entire difSL sequence; 2.) XerS binds more efficiently the left half side on incomplete difSL mutants than the right half side; 3.) XerS cleaves both the top and bottom strands of the difSL site, with a more efficient reaction at the bottom strand; 4.) Nucleotides at the outermost region of a T rich region seem to be determinant for binding selectivity and modifications of the extra spacing between the inverted repeat arms as well as length modifications of the central region change cleavage preference. 5.) XerS did not show any specific activity on another unconventional dif site in Firmicutes, as tested on difH. 6.) XerS interacts with FtsK-y subunit. This research aims to understand how XerS recombination works in the single recombinase system of Streptococcus and how this recombination is regulated by host factors. Exploration of these recombinases will provide a better understanding of the mechanisms of DNA exchange and genome stability in bacteria. It can also increase our knowledge of the evolution and speciation of recombinogenic bacteria.
20

Eléments génétiques mobiles et évolution génomique chez les Archées Thermococcales / Mobile genetic elements and genome evolution in the Archaea Thermococcales

Badel, Catherine 02 July 2019 (has links)
Les réarrangements permettent une évolution rapide du génome par l’acquisition de séquences codantes exogènes, la perte de fonctions non-essentielles ou la création de nouvelles organisations génomiques. Différents mécanismes de réarrangements impliquant des éléments génétiques mobiles (EGM) ont été identifiés chez les archées, les bactéries et les eucaryotes. En revanche, on ignore l’origine des nombreuses inversions génomiques détectées pour les espèces du genre archéen Thermococcus. Mes travaux de thèse visent à améliorer la compréhension de l’évolution génomique chez les Thermococcales à travers l’étude de deux familles d’EGM : les familles de plasmides pTN3 et pT26-2. Plus précisément, je me suis intéressée aux recombinases à tyrosine (ou intégrases) que ces plasmides encodent et qui permettent leur intégration dans le chromosome de l’hôte. J’ai montré que l’intégrase plasmidique Intᵖᵀᴺ³ est responsable d’inversions dans le chromosome de son hôte Thermococcus nautili grâce à une activité catalytique inédite de recombinaison homologue. J’ai par la suite caractérisé deux autres intégrases de Thermococcales reliés phylogénétiquement à Intᵖᵀᴺ³ dont seulement une présente une activité de recombinaison homologue. La comparaison de leurs séquences primaires et la résolution de la structure de Intᵖᵀᴺ³ vont maintenant éclairer les déterminants génétiques responsables de la spécificité de site et de l’activité de recombinaison homologue. Les trois intégrases appartiennent à une classe de recombinases spécifique des archées qui catalyse une intégration suicidaire. Lors de l’intégration, le gène de l’intégrase est fragmenté et probablement désactivé. L’EGM intégré se retrouve piégé dans le chromosome. Les avantages évolutifs d’une telle activité suicidaire restent pour l’instant mystérieux. J’ai identifié 62 intégrases hyperthermophiles suicidaires et reconstruit leur histoire évolutive. Ces intégrases sont très prévalentes et recrutées par différents EGM. De plus, j’ai montré que l’une de ces intégrases présente in vitro une activité de recombinaison site-spécifique à des températures proches de l’ébullition de l’eau, représentant un avantage dans les environnements hyperthermophiles. / Genomes rapidly evolve through rearrangements that can generate new genome organizations or lead to the acquisition of foreign coding sequences or the loss of non-essential functions. Several mechanisms of rearrangement were uncovered for Archaea, Bacteria and Eukaryotes that involve mobile genetic elements (MGE). Species from the archaeal genera Thermococcus present numerous genomic inversions but none of the previously known inversion drivers. To better understand the genomic evolution of Thermococcales, I investigated two of their MGE families: the pTN3 and pT26-2 plasmid families. Specifically, I focused on the tyrosine recombinases (or integrase) that these plasmids encode and that catalyze their site-specific integration in the host chromosome. I demonstrated that the plasmidic integrase Intᵖᵀᴺ³ is responsible for chromosomal inversions in the host Thermococcus nautili through an unprecedented homologous recombination catalytic activity. I also characterized two other related Thermococcus integrases and only one catalyzes homologous recombination. The structure resolution of Intᵖᵀᴺ³ and primary sequence comparisons will now provide clues about the genetic determinants of site specificity and of the homologous recombination activity. The three integrases all belong to an archaeal-specific class of integrases that catalyzes a suicidal integration. The integrase gene is partitioned and presumably inactivated upon integration. The integrated MGE is then trapped into the chromosome. The evolutionary benefits of this suicide activity are puzzling. I identified 62 related suicidal hyperthermophilic integrases and reconstructed their evolutionary history. They are highly prevalent and recruited by diverse MGE. I also showed that one of these integrases can catalyze in vitro site-specific recombination at near boiling water temperature, representing an advantage in hyperthermophilic environments.

Page generated in 0.0924 seconds