11 |
Physicochemical properties of protein inclusion bodies /Wangsa-Wirawan, Norbertus Djajasantosa. January 1999 (has links) (PDF)
Thesis (Ph.D.)--University of Adelaide, Dept. of Chemical Engineering, 2000? / Bibliography: leaves 182-198.
|
12 |
Low-rate trickling filter effluent : characterisation and crossflow filtrationMarquet, Richard January 1999 (has links)
The low-rate trickling filter is the most common biological treatment process used in small and medium sized sewage works in the UK. It produces an inconsistent effluent quality, which has traditionally been related to seasonal changes in solids accumulation, grazing activity and sloughing of microbial film. The final effluent solids and, organic matter content is then too high for discharge or reuse. Given the increasingly stringent effluent standards, both in terms of quality and consistency, tertiary treatment is often required. This study was designed to investigate the key parameters affecting the performance of low-rate trickling filters and the characteristics of their effluents in terms of contaminant size, which might influence the efficiency of crossflow filtration as a tertiary treatment for the trickling filter.
|
13 |
Influence of Sediment Composition on Apparent Toxicity in a Solid‐phase Test Using Bioluminescent BacteriaBenton, Michael J., Malott, Michelle L., Knight, Scott S., Cooper, Charles M., Benson, William H. 01 January 1995 (has links)
Clean and spiked sediment formulations of various silt sand and clay sand ratios were tested for toxicity using a bioassay that utilizes bioluminescent bacteria Measured toxicities of clean and copper sulfate–spiked sediments were negatively but nonlinearly related with percent silt and percent clay, but no significant relationship existed between measured toxicity and sediment composition for methyl parathion–spiked formulations Results suggest that solid phase sediment bioassays using bioluminescent bacteria may be useful for testing the toxicities of single contaminants in formulated artificial sediments of known particle size composition, and for repeated samples collected from the same site However, extreme caution must be taken when testing sediments of varying composition or which may be differentially contaminated or contain a suite of contaminants.
|
14 |
Characterising South Africa’s major dust sourcesBekiswa, Sisanda Ongeziwe 24 February 2020 (has links)
The study investigates the surface controls of major dust emissions and determines the patial distribution of major dust source in South Africa. This study follows a multi-disciplinary approach where primary and secondary data were used. The main objective of the study is to determine the spatial distribution of South Africa's Major Dust Sources. Meteosat Second Generation (MSG) satellite imagery, land use and land cover maps were used to achieve the first and the second objectives of the study. Primary data involved sampling 30 soil samples in the field in order to achieve the third objective of the study. The crust, soil moisture, soil texture and grain size are all controls of dust emission. This investigation is however focused predominantly on grain size characteristics. GIS methods were also used to determine soil type from the African soil map. Soil samples in both provinces were then collected to assess the Particle Size Distribution (PSD) of the soils. The particle size was determined based on a sieve analysis for grain sizes that were greater than 2mm and laser diffractometry, MasterSizer (Malvern) was used to achieve this. The results from the Malvern were later put to R Statistics where they were clustered into eight clusters to determine similarities and difference of the grain size. Because there is no uniqueness in the soil types found in the study area, there were no solid conclusions made based in them. The results show that the soil types are found across South Africa but not the same amount of dust activity was detected in the other parts of the country. Previous studies show that global significant dust sources are natural sources such as lakes, pans and depressions. However, results demonstrate that South African dust sources are anthropogenic sources resulting from commercial agriculture in semi-arid regions. This study has demonstrated that surface sediments suitable for dust production are a mixture of fine material, silt (50µm) and coarse material, sand (2000µm) and it appears that all clusters in this study all contained both mixtures and all have potential to emit dust.
|
15 |
The Evolution of Population in Canada's Metropolitan System / Changes in the Rank-Size DistributionThersidis, Christos 04 1900 (has links)
<p> The purpose of this research paper is to empirically examine
the evolution of the Canadian urban system throughout the
past century. This task is completed with the use of the
rank-size rule and the parameters that emanate from its
logarithmic distribution. This process entails the creation
of a historical data set from the inception of the urban
areas of each one of the twenty-four CMAs that are used in
this study. The collection of the evolving slope and yintercept
parameters during the study's fourteen rank-size
distribution periods, shows how policy decisions are
manifested in the empirical changes of the rank-size rule's
slope. Confederation and expansion of the railroad into the
prairie frontier are distictly evident in the evolving
parameters. It was also found that Canada's geographical
distribution of CMAs apparently limits the rank-size rule
constant to a value of -1.1 . This distribution is steeper
than the optimal market efficiency slope of -1.0 as
presented in Zipf's explanation of the forces of attraction
and dispersion of economic activity. The statistical
results of this paper can be used to· compare different
national systems or take a more regional approach in
comparing Canadian CMA sub-systems. </p> / Thesis / Bachelor of Arts (BA)
|
16 |
Interactions Between Dust and Ecosystem, and Landscape at Multiple ScalesHuang, Xinyue 05 September 2024 (has links)
Atmospheric dust is the largest contributor to global aerosols from land. Dust emissions rate and properties are influenced by meteorological conditions, parent soil, and landscape, and in turn, it affects impacts on climate, ecosystems, and human societies through various pathways. This dissertation aims to explore the coupled dynamics of dust particle emissions and their essential properties in relation to topography, ecosystem, and atmospheric conditions by integrating information across multiple scales. Specifically, three research projects are pursued. First, the modulation of dust emissions by non-photosynthetic vegetation (NPV) is evaluated by implementing a satellite-based total vegetation dataset, which includes NPV, into a regional atmospheric chemistry model. Simulations of the entire year 2016 over the conterminous United States demonstrate that NPV reduces dust emissions by 10-70% from most dust sources in the southwest, particularly in spring. Second, the relationship between topographic wind conditions (i.e., speed and direction with respect to surface slope) and dust particle size distribution is investigated using a decade's worth of dust reanalysis data covering North Africa. Findings indicate that the fraction of coarse dust in emissions increases with wind speed and slope, particularly under uphill winds, the latter highlighting the role of topography in enhancing vertical transport for larger particles. These positive correlations weaken during the afternoon and summer events, suggesting that turbulence associated with haboob events suspends coarse particles. Finally, a series of air samples collected in Tenerife, Spain is revisited for a detailed study on the associated dust plume characteristics, which would facilitate the understanding of how environmental factors during transport influence airborne microbial assemblages. Using back trajectory analysis and dust optical depth reanalysis data, air samples impacted by African dust are identified. Seasonal variations in trajectories and associated environmental conditions reveal highly variable trans-Atlantic airflows. Elevated altitudes, higher temperatures, and lower relative humidity (RH) along summer trajectories implied the presence of Saharan Air Layer, whereas the frequent occurrence of higher RH (> 40%) and light precipitation in spring indicate more deposition of dust and associated microbes during transport. Overall, this work highlights the importance of accurately representing of various environmental elements that interact with the dust cycle, such as vegetation and topographic winds, which improves our ability to predict and manage the impacts of dust as well as other components of the Earth system. / Doctor of Philosophy / Dust particles can be lifted by strong winds from dry lands, and they are a major contributor to the amount of particles in the air. Suspended dust particles can alter temperatures and weather patterns, reduce visibility, and cause health problems. When settling back to land or oceans, they can carry nutrients and microbes that influence the growth of plants and animals. The movement and properties of dust are subject to various elements of the environment, spanning from microscopic scale to global scale. This dissertation aims to explore the interactions between dust and a few of these environmental elements that are not well understood. Specifically, we first provide information about brown vegetation, which was previously lacking, to a dust model, and find that the dust emissions in the southwestern United States is reduced by 10-70%, particularly in spring. Second, we examine how the changes of wind over slopes influence the size of dust particles in the air by analyzing data for 10 years that combine information from models and satellite observations. We find that faster winds and uphill slopes lead to more large dust particles in the atmosphere. The third study analyzes the pathways of air samples from Africa to Tenerife, Spain, to understand how the transport of dust might affect the types of bacteria that travel with it across the ocean. We find that the airflows from Africa to Tenerife vary greatly from case to case, and the environmental conditions, such as precipitation and relative humidity, varying significantly across seasons and during the dust travel. Overall, this dissertation provides a deeper understanding of the complex ways dust interacts with our world, offering insights that can help us manage its impacts on climate, ecosystems, and human society more effectively.
|
17 |
Particle Size Distribution Analysis of a Mining-Impacted Gravel-Bed Stream in Ohio Using a Hybrid Sediment Sampling TechniqueDalecky, Amanda Lee 26 November 2001 (has links)
As part of a risk assessment study of the Leading Creek Watershed in Ohio, a prior Virginia Tech researcher collected pavement and subpavement sediment samples at 17 sites using the hybrid areal sampling technique with a clay adhesive. The watershed, which is heavily impacted by mining and agricultural activities, suffers from low pH, high concentrations of metals and sediment in the water column, and excessively silted streambeds. The current work presents the results of the particle size analyses performed on the hybrid samples in the context of evaluating the effectiveness of the technique itself and as a tool in future watershed/ecological studies, as well as examining possible relationships between siltation and indicators of ecological health in Leading Creek. By combining clay grid and adhesive sampling methods, the hybrid technique consistently achieved an effective particle size sampling range of 0.05 mm (1.97 x 10-3 in) to over 300 mm (11.8 in), thereby reducing the common problem of trunction. However, the overlap of the clay adhesive and natural sediment distributions and atypical sediment loading from surrounding abandoned and reclaimed mine lands obscured expected trends such as downstream fining and hindered the analysis of materials finer than 0.125 mm (4.93 x 10-3 in). Volumetric conversion of areal samples using the Modified Cube Model with a traditional exponent of -1 for clay was complicated by the large amount of fines in the Leading Creek samples. Further investigation into a more appropriate conversion technique for the evaluation of fine sediment samples is warranted. / Master of Science
|
18 |
PREDICTING THE PERMEABILITY OF SANDY SOILS FROM GRAIN SIZE DISTRIBUTIONSOnur, Emine Mercan 28 January 2014 (has links)
No description available.
|
19 |
The effect of grain size on river delta process and morphologyCaldwell, Rebecca Lee January 2013 (has links)
Thesis advisor: Douglas A. Edmonds / Delta morphology is traditionally explained by differences in fluvial energy and wave and tidal energy. However, deltas influenced by similar ratios of river to marine energy can display strikingly different morphologies. Other variables, such as grain size of the sediment load delivered to the delta, influence delta morphology, but these models are largely qualitative leaving many questions unanswered. To better understand how grain size modifies deltaic processes and morphologies I conducted 33 numerical modeling experiments and quantified the effects produced by different grain sizes. In these 33 runs I change the median (0.01 - 1 mm), standard deviation (0.1 - 3 φ), and skewness (-0.7 - 0.7) of the incoming grain-size distribution. The model setup includes a river carrying constant discharge entering a standing body of water devoid of tides, waves, and sea-level change. The results show that delta morphology undergoes a transition as median grain size and standard deviation increase while changing skewness has little effect. At small median grain size and standard deviation, deltas have elongate planform morphologies with sinuous shorelines characterized by shallow topset gradients ranging from 1 x 10<super>-4</super> to 3 x 10<super>-4</super>, and by 1 - 8 stable active channels. At large median grain size and standard deviation, deltas transition to semi-circular planform morphologies with smooth shorelines characterized by steeper topset gradients ranging from 1 x 10<super>-3</super> to 2 x 10<super>-3</super>, and by 14 - 16 mobile channels. The change in delta morphology can be morphodynamically linked to changes in grain size. As grain size increases delta morphology transitions from elongate to semi-circular because the average topset gradient increases. For a given set of flow conditions, larger grain sizes require a steeper topset gradient to mobilize and transport. The average topset gradient reaches a dynamic equilibrium through time. This requires that, per unit length of seaward progradation, deltas with steeper gradients have higher vertical sedimentation rates. Higher sedimentation rates, in turn, perch the channel above the surrounding floodplain (so-called `super-elevation'), resulting in unstable channels that frequently avulse and create periods of overbank flow. The overbank flow is more erosive because the steeper gradient causes higher shear stresses on the floodplain, which creates more channels. More channels reduce the average water and sediment discharge at a given channel mouth, which creates time scales for mouth bar formation in coarse-grained deltas that are longer than the avulsion time scale. This effectively suppresses the process of bifurcation around river mouth bars in coarse-grained deltas, which in turn creates semi-circular morphologies with smooth shorelines as channels avulse across the topset. On the other hand, the finest-grained (i.e. mud) deltas have low topset gradients and fewer channels. The high water and sediment discharge per channel, coupled with the slow settling velocity of mud, advects the sediment far from channel mouths, which in turn creates mouth bar growth and avulsion time scales that are longer than the delta life. This creates an elongate delta as stable channels prograde basinward. Deltas with intermediate grain sizes have nearly equal avulsion and bifurcation time scales, creating roughly semi-circular shapes but with significant shoreline roughness where mouth bars form. / Thesis (MS) — Boston College, 2013. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
|
20 |
Método de formulação de argamassas de revestimento baseado em distribuição granulométrica e comportamento reológico. / Formulation method for rendering mortars based on particle size distribution and rheological behavior.Cardoso, Fábio Alonso 11 September 2009 (has links)
O desempenho final das argamassas depende das matérias-primas e de suas proporções na formulação, pois estas determinam o comportamento do material na etapa de aplicação e a microestrutura final do material endurecido. Entre as patologias de revestimentos, a falha de aderência é um dos fenômenos mais freqüentes, sendo originada pela incompatibilidade entre o comportamento reológico da argamassa e a energia de lançamento utilizada, resultando em defeitos na interface argamassa substrato. A adequação das características reológicas das argamassas às solicitações envolvidas na aplicação fornece condições de processamento mais favoráveis para a obtenção das máximas propriedades finais do revestimento. Assim, o objetivo do trabalho é desenvolver critérios de formulação, baseados nas características das matérias-primas, nos modelos de empacotamento de partículas e nos comportamentos reológicos, de modo a obter um método de formulação de argamassas. O método de squeeze-flow foi desenvolvido com sucesso para avaliação reológica de argamassas, sendo as principais variáveis experimentais foram estudadas, assim como o efeito do tipo de mistura no comportamento reológico. Procedimento para quantificação da segregação pasta-agregado foi criado, tendo em vista o intenso efeito que este fenômeno exerce sobre o comportamento reológico em squeeze-flow, especialmente em baixas velocidades. Foi ainda comprovado que o squeeze-flow tem boa relação com a percepção do pedreiro, principalmente, nas etapas de lançamento e aperto. Diversas argamassas nacionais e européias foram caracterizadas, resultando em um mapeamento das características de formulação, do comportamento reológico e das propriedades no estado endurecido. Através da aplicação de conceitos de empacotamento e distância de separação de partículas, foi verificado que a otimização do empacotamento de agregados permite um melhor aproveitamento da pasta para promover argamassas com comportamento reológico mais adequado à aplicação ou com menor consumo de finos e água. As correlações estabelecidas entre as características no estado fluido e as propriedades no estado endurecido permitem prever o comportamento das propriedades no estado endurecido com boa confiabilidade. Por fim, são descritas diretrizes sistemáticas para a formulação de argamassas considerando requisitos de desempenho tanto no estado fresco quanto no endurecido. / The in-use performance of rendering mortars depends on the raw materials features and their content in the formulation, since they have major influence on the material behavior during emplacement, as well as, on its final properties. Adherence failure is one of the most frequent problems of this class of building materials, caused by the incompatibility between rheological behavior and the application process, generating mortar/substrate interface flaws. A rheological behavior more suitable to the application demands, provides appropriate conditions to obtain maximum final rendering properties. Therefore, the main goal of this work is to develop mix-design parameters based on raw materials features, particle packing models and rheological behavior, in order to create a mix-design method for mortars. Squeeze-flow technique was successfully adapted for the rheological evaluation of rendering mortars, and the most important experimental parameters were studied. The method is sensitive enough to measure rheological changes as a function of the mixing process applied. Considering that phase segregation plays an important role on the rheological behavior of concentrated suspensions especially at low speeds, a method was developed to measure paste-aggregate segregation. It was also established that the squeeze-flow agrees well with the workers perception during manual emplacement. Several Brazilian and European products were evaluated, and significant differences were determined on the formulation features, rheological behavior and hardened properties. Using models of particle packing and particle distance, it was verified that optimized packing of aggregates enhances rheological behavior and can also allow the reduction of water and fine particles consumption. The experimental relationships established between fresh characteristics, rheological behavior and final properties can be used to predict hardened features and properties with fair confidence. Lastly, mix-design suggestions are made considering both fresh and hardened performance.
|
Page generated in 0.1281 seconds