• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 14
  • 14
  • 14
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Popis porušování vrstevnatých polymerních prostředí / Description of Failure of the Multilayer Polymer Structure

Zouhar, Michal January 2014 (has links)
The aim of this thesis is to describe behavior of cracks in layered polymer materials. Quasi-brittle fracture (through the initiation and subsequent crack propagation mechanism) under low stresses is the most common mode of failure of polymer materials. In this case plastic deformations are localized in the vinicity of the crack tip and linear elastic fracture mechanics description of the crack behavior can be used. The knowledge of fracture parameters change during the crack propagation in multilayer body is a key point for establishing of the maximum load and consequently for the assessment of the residua lifetime. In contrast to homogeneous bodies the estimation of stress intensity factors for multilayer (composite) structure is numerically more elaborated and the fracture mechanics approach is complicated by the existence of interfaces between single layers, where material parameters are changed by a step. Special attention is paid to the configuration of a crack growing close to the material interface and along the interface. For the crack with tip on the material interface the effective values of stress intensity factor based on the crack stability criteria are estimated. It is shown that under special conditions (depending mainly on the elastic mismatch of materials) the existence of material interface has positive influence on the lifetime of the multilayered structure.
12

Rupture différée en fatigue statique aux très hautes températures (800° - 1300°) des fils Hi-Nicalon, des composites Hi-Nicalon/Type PyC/SiC et des composites Hi-Nicalon/Type PyC/B4C

Laforet, Adrien 01 April 2009 (has links)
La rupture différée des fibres SiC de type Hi-Nicalon à l’échelle multifilamentaire, des minicomposites de type Hi-Nicalon/PyC/SiC et Hi-Nicalon/type PyC/B4C a été étudiée à l’aide de moyens d’essais spécifiques et innovants. Des essais de fatigue statique sous air aux très hautes températures (900°C-1300°C) avec mesure des déformations ont ainsi pu être réalisés sur ces différents matériaux. Les résultats expérimentaux obtenus (durée de vie, déformation, lois de comportement en traction) ont permis de comprendre et de modéliser les mécanismes responsables de la rupture différée aux différentes échelles : - Les fils Hi-Nicalon rompent par mécanisme de fissuration lente activé par l’oxydation du carbone libre des fibres. Le mécanisme de fissuration est perturbé par la formation rapide d’oxyde SiO2 à partir de 1000°C : pour les faibles contraintes, la cinétique de fissuration lente est ralentie par formation d’oxyde protecteur empêchant l’accès de l’oxygène aux fissures ; pour les fortes contraintes, la rupture des fils est prématurée à cause de collages inter-fibres (fibre-oxyde-fibre). A 1200°C, le mécanisme de fluage semble être à l’origine de la rupture quasi-instantanée du matériau pour des contraintes supérieures à 200 MPa. - Les minicomposites Hi-Nicalon/type PyC/SiC rompent par mécanisme de fissuration lente ralenti par la présence de matrice SiC et par la formation d’oxyde SiO2 limitant l’accès de l’oxygène aux fibres. le mécanisme de fluage est observé à partir de 1200°C mais il n’a jamais été responsable de la rupture du matériau. - Les minicomposites Hi-Nicalon/type PyC/B4C rompent par mécanisme de fissuration lente ralenti par formation d’oxyde B2O3 à 900°C pour les fortes contraintes. Pour les autres températures et pour les faibles contraintes à 900°C le mécanisme de rupture est la diminution rapide du diamètre des fibres à cause de l’augmentation de la cinétique d’oxydation des fibres par l’oxyde B2O3. Des modèles analytiques basés sur ces différents mécanismes permettent de prévoir la durée de vie du matériau en prenant en compte les incertitudes de mesure et la variabilité des résultats de durée de vie. / Delayed failure of SiC Hi-Nicalon multifilament tows (500 fibers), minicomposites Hi-Nicalon/type PyC/SiC and Hi-Nicalon/type PyC/B4C was investigated in static fatigue, in air, at high temperatures (900°C – 1300°C) using specific and innovative devices. Static fatigue tests with measure of strain were performed on these materials. The experimental results (lifetime, strain, tensile behavior) have helped to understand and model the mechanisms responsible for the delayed failure at the different scales: - Hi-Nicalon tows rupture is caused by subcritical crack growth mechanism activated by oxidation of free carbon in the fibres. This phenomenon is disrupted by fast oxide SiO2 formation over 900°C: subcritical crack growth kinetic slows down for low stresses because of protective oxide formation which prevents the cracks from oxygen; For high stresses, the lifetime of Hi-Nicalon tows is weaker because of fibers interactions (fiber-oxide-fiber). At last, creep seems to cause the rupture of the tows for stresses over 200 MPa at 1200°C. - Hi-Nicalon/type PyC/SiC minicomposites break by subcritical crack growth slowed down by the SiC matrix and by the SiO2 formation which limit the access of the oxygen to the fibers. Creep occurs at 1200°C but it isn’t responsible of the rupture. - Hi-Nicalon/type PyC/B4C minicomposites break by subcritical crack growth slowed down by the formation of B2O3 oxide at 900°C for high stresses. The rupture is caused by the fast decrease of the diameter of the fibers at the other temperatures and for low stresses at 900°C. The oxidation kinetic of the fibers increases because of the dissolution of silica coating by B2O3 oxide. Analytical modeling was performed to schedule the lifetime of these materials and the variability of the experimental results is studied.
13

Vliv reziduálních napětí na odhad životnosti polymerních trubek / Influence of Residual Stress on Lifetime Prediction of Polymer Pipelines

Poduška, Jan January 2019 (has links)
The lifetime of plastic pipes for water supply and other applications is demanded to exceed at least 50 years. Such a long lifetime is difficult to prove by standard testing methods like the hydrostatic pres-sure test. However, it is possible to calculate an estimation of the lifetime, as the most frequently oc-curring mechanism of failure of plastic pipes is the creep crack propagation and subsequent failure. The method is based on describing the crack propagation by parameters of the linear-elastic fracture mechanics. An important part of this method is a finite element simulation of crack propagation in a pipe loaded by various types of loads. Residual stress, a side product of solidification after extrusion, is one of these loads. This thesis begins with an introductory part and literature review of the relevant topics – most of all the typical material properties of the pipe materials, mechanisms of failure, methods of residual stress determination suitable for plastic pipes and their results, methods of testing the materials and calculating lifetime. After the introduction, the problems to be solved are defined. The description of the residual stress state in the wall of various plastic pipes is the main topic. Both tangential (hoop) and axial residual stress in pipes of different dimensions and materials are determined using a combination of experiments and numerical simulations. Also, a simplified method of tangential residual stress is designed that can provide a sufficiently precise description of the tangential resid-ual stress state and is not difficult to carry out. A method to include the residual stress in the lifetime calculations and its influence on the lifetime is also dealt with. Apart from residual stress, the influence of soil loads in case of a buried pipe is studied. The residual stress can also influence the experimental determination of crack growth rate. If the CRB (cracked round bar) test is used to measure the crack growth rate, the crack can propagate asymmetrically due to the presence of residual stress in the specimens, which affects the results. Based on a finite element simulation of crack propagation in a CRB specimen, the severity of the influence is assessed.
14

Prévision de la durée de vie des composites à matrice céramique auto cicatrisante, en fatigue statique, à haute température (= 800°C) / Prediction of lifetime in static fatigue, at high temperatures for ceramic matrix composites

De Melo - Loseille, Olivier 15 March 2010 (has links)
La rupture différée d’un composite SiC/SiC a été étudiée en fatigue statique, sous air, aux températures intermédiaires (500°C-800°C). Les résultats expérimentaux (durée de vie, loi de comportement en traction, déformation) et les fractographies ont permis d’identifier les modes de rupture de fibre qui interviennent dans la rupture différée. Un modèle mécanique probabiliste multiéchelle a été développé pour simuler le comportement en fatigue et prévoir la durée de vie. La microstructure est décrite par des distributions statistiques identifiées à partir des résultats de l’étude fractographique. Des diagrammes d’endurance du composite en fatigue ont été calculés pour prévoir la durée de vie. Ces derniers confirment que la tenue du composite est dictée par les fils. La modélisation montre que la microstructure joue un rôle déterminant sur la durée de vie et sa variabilité. Des relations microstructures-propriétés sont établies. Le lien entre contrainte résiduelle et durée de vie est également examiné. Une approche fiabiliste sur les échantillons à information faible est menée à l’aide de l’inférence bayésienne. Les résultats concordent avec l’approche mécanique. / Delayed failure of SiC/SiC woven composite is studied under static fatigue, in air, for intermediate temperatures (500°C – 800°C). Experimental results and fractographic examination are used to identify damage mechanisms. A multi-scale probabilistic facture based model is proposed to simulate damage kinetics in longitudinal tows. Microstructure is described with appropriate statistical distributions identified on fractographic investigations. Simulations demonstrate a significant effect of the microstructure on the lifetime of the tows. Microstructure – properties relations are established.

Page generated in 0.074 seconds