• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation et étude numérique de la fissuration lente des céramiques : influence de la microstructure et de l'environnement. Application aux céramiques élaborées par projection plasma / Modelling and numerical investigation of slow crack growth in ceramics : influence of the microstructure and the environment. Application to plasma spray processed ceramics

Zoghbi, Bassem El 18 February 2014 (has links)
Les céramiques sont sensibles à la fissuration lente qui résulte de l'effet conjoint entre un chargement mécanique et l'environnement (taux d'humidité et température). A partir d'études atomistiques disponibles dans la littérature, un modèle cohésif représentant localement la rupture assistée par l'environnement est proposé dans le cadre d'une formulation thermiquement activée. Nous montrons que cette description est capable de rendre compte de la fissuration lente en fatigue statique de monocristaux de céramiques, ainsi que la fissuration lente intergranulaire de polycristaux. Nous soulignons qu'une représentation de la fissuration lente avec la vitesse de propagation V en fonction du taux de restitutions d'énergie G rend compte des caractéristiques intrinsèques de la cinétique de rupture et est préférable à une présentation V-K. Le modèle cohésif permettant d'incorporer une longueur caractéristique dans la description, des effets de taille de grains sont explorés. La prise en compte des contraintes initiales d'origine thermique liées à l'élaboration est nécessaire pour prédire de manière réaliste l'accroissement du seuil de chargement en-dessous duquel aucune propagation n'a lieu ainsi que la résistance à la fissuration lente avec la taille de grains augmentant. La vitesse fissuration lente et le seuil de chargement K0 sont sensibles à l'environnement et notamment à la température et à la concentration d'eau. En augmentant la concentration d'eau et/ou la température, le seuil K0 diminue et la vitesse de fissuration lente augmente. Pour rendre compte de l'influence du taux d'humidité sur la fissuration lente, il est nécessaire de considérer une énergie d'activation ainsi qu'un seuil d'amorçage du mécanisme de réaction-rupture diminuant avec la concentration locale en eau. L'effet de la température est prédit de manière réaliste avec le modèle cohésif proposé et en tenant compte des contraintes initiales thermiques. Nous avons comparé les réponses en fissuration lente de l'alumine et de la zircone et montré qu'intrinsèquement et en l'absence de transformation de phase, la zircone résiste mieux à la fissuration lente que l'alumine. A partir de ces résultats, nous avons abordé l'étude de la fissuration lente de céramiques élaborées par projection plasma. Un endommagement initial de la microstructure à l'échelle des splats est observé sans qu'il n'influence la fissuration lente intra-splats en termes V-G. / Ceramic materials are prone to slow crack growth (SCG)due to the combined effect of the mechanical loading and the environment (moisture and temperature).Based on atomistic studies available in the literature,a thermally activated cohesive model is proposed to represent the reaction-rupture mechanism underlying slow crack growth. The description is shown able to capture SCG under static fatigue on ceramic single crystals as well as intergranular SCG in polycrystals.We emphasize that the representation of SCG with the crack velocity versus the energy release rate G accounts for the intrinsic characteristics of SCG, which is preferable than a usual plot with V-K curves.The cohesive model incorporates a characteristic length scale, so that size effects can be investigated. SCG is grain size dependent with the decrease of the crack velocity at a given load level and improvement of the load threshold with the grain size. To capture this observation, account for the initial thermal stresses related to the processing is mandatory. SCG is also dependent on the concentration of water with an increase of the crack velocity and a decrease of the load threshold with the relative humidity increasing. To predict this effect, the cohesive description needs to account for activation energy and a threshold to trigger the reaction-rupture that depends on the concentration of water. The influence of the temperature on SCG shows an increase in the crack velocity and a decrease of the load threshold for SCG due to the reduction in the initial thermal stresses. The SCG behavior of the alumina and zirconia is compared. Zirconia exhibits a better resistance to SCG compared to that of alumina, in the absence of any phase transformation due to lower kinetics of its reaction-rupture. Based on these results, SCG is investigated in plasma sprayed ceramic. An initial damage at the scale of the splats is observed without effect on load threshold G0 for SCG in V-G plots.
2

Etude du comportement thermomécanique de la YSZ projetée plasma sous vieillissement hydrique / Study of the YSZ mechanical behavior under humid atmosphere

Leclercq, Gaëlle 10 January 2014 (has links)
Les dépôts de YSZ, élaborés par projection plasma, sont des céramiques réfractaires généralement utilisées pour les applications de barrières thermiques (TBC). Sa faible conductivité thermique associée à sa bonne résistance mécanique assure aux TBC de hautes performances et de bons rendements. La structure et la microstructure complexe sont à l'origine de ces propriétés mécaniques, et celles doivent être contrôlées. Tout comme les céramiques denses la YSZ se dégrade en température et sous vapeur d'eau.La dégradation des propriétés mécaniques dans le temps (module d'élasticité et contrainte à rupture)est accélérée par la température. Pour cette étude les propriétés ont été évaluées en flexion 3 points à température ambiante. Les observations structurales et microstructurales ont été réalisées respectivement par DRX et microscopie électronique à balayage au cours du vieillissement. Un model analytique a pu être proposé pour prédire le comportement du matériau dans le temps sous humidité. / Yttria Stabilized Zirconia (YSZ) coatings, deposited by plasma sprayed process, are refractory ceramics mostly used as the Thermal Barrier Coating (TBC) applications. The low YSZ thermal conductivity associated to the good mechanical resistance ensures a high performances and efficiencies of these TBC. The structure and the complex microstructure are responsible for the mechanical properties and must be controlled. Like brittle ceramic materials, the YSZ is affected by degradation at low temperature due to water vapor. Material ageing results from the progressive degradation of the mechanical properties (such as fracture strength and Young’s modulus), which seem to decrease in time and accelerate depending on temperature. In this study, the mechanical properties have been evaluated by means of three-point bending tests at room temperature. The observations of the structure and the microstructure are respectively investigated by X-ray diffraction and SEM-technique with material ageing. An analytical model is suggested in order to predict the evolution of the properties under humidity atmosphere.
3

Rupture différée en fatigue statique aux très hautes températures (800° - 1300°) des fils Hi-Nicalon, des composites Hi-Nicalon/Type PyC/SiC et des composites Hi-Nicalon/Type PyC/B4C

Laforet, Adrien 01 April 2009 (has links)
La rupture différée des fibres SiC de type Hi-Nicalon à l’échelle multifilamentaire, des minicomposites de type Hi-Nicalon/PyC/SiC et Hi-Nicalon/type PyC/B4C a été étudiée à l’aide de moyens d’essais spécifiques et innovants. Des essais de fatigue statique sous air aux très hautes températures (900°C-1300°C) avec mesure des déformations ont ainsi pu être réalisés sur ces différents matériaux. Les résultats expérimentaux obtenus (durée de vie, déformation, lois de comportement en traction) ont permis de comprendre et de modéliser les mécanismes responsables de la rupture différée aux différentes échelles : - Les fils Hi-Nicalon rompent par mécanisme de fissuration lente activé par l’oxydation du carbone libre des fibres. Le mécanisme de fissuration est perturbé par la formation rapide d’oxyde SiO2 à partir de 1000°C : pour les faibles contraintes, la cinétique de fissuration lente est ralentie par formation d’oxyde protecteur empêchant l’accès de l’oxygène aux fissures ; pour les fortes contraintes, la rupture des fils est prématurée à cause de collages inter-fibres (fibre-oxyde-fibre). A 1200°C, le mécanisme de fluage semble être à l’origine de la rupture quasi-instantanée du matériau pour des contraintes supérieures à 200 MPa. - Les minicomposites Hi-Nicalon/type PyC/SiC rompent par mécanisme de fissuration lente ralenti par la présence de matrice SiC et par la formation d’oxyde SiO2 limitant l’accès de l’oxygène aux fibres. le mécanisme de fluage est observé à partir de 1200°C mais il n’a jamais été responsable de la rupture du matériau. - Les minicomposites Hi-Nicalon/type PyC/B4C rompent par mécanisme de fissuration lente ralenti par formation d’oxyde B2O3 à 900°C pour les fortes contraintes. Pour les autres températures et pour les faibles contraintes à 900°C le mécanisme de rupture est la diminution rapide du diamètre des fibres à cause de l’augmentation de la cinétique d’oxydation des fibres par l’oxyde B2O3. Des modèles analytiques basés sur ces différents mécanismes permettent de prévoir la durée de vie du matériau en prenant en compte les incertitudes de mesure et la variabilité des résultats de durée de vie. / Delayed failure of SiC Hi-Nicalon multifilament tows (500 fibers), minicomposites Hi-Nicalon/type PyC/SiC and Hi-Nicalon/type PyC/B4C was investigated in static fatigue, in air, at high temperatures (900°C – 1300°C) using specific and innovative devices. Static fatigue tests with measure of strain were performed on these materials. The experimental results (lifetime, strain, tensile behavior) have helped to understand and model the mechanisms responsible for the delayed failure at the different scales: - Hi-Nicalon tows rupture is caused by subcritical crack growth mechanism activated by oxidation of free carbon in the fibres. This phenomenon is disrupted by fast oxide SiO2 formation over 900°C: subcritical crack growth kinetic slows down for low stresses because of protective oxide formation which prevents the cracks from oxygen; For high stresses, the lifetime of Hi-Nicalon tows is weaker because of fibers interactions (fiber-oxide-fiber). At last, creep seems to cause the rupture of the tows for stresses over 200 MPa at 1200°C. - Hi-Nicalon/type PyC/SiC minicomposites break by subcritical crack growth slowed down by the SiC matrix and by the SiO2 formation which limit the access of the oxygen to the fibers. Creep occurs at 1200°C but it isn’t responsible of the rupture. - Hi-Nicalon/type PyC/B4C minicomposites break by subcritical crack growth slowed down by the formation of B2O3 oxide at 900°C for high stresses. The rupture is caused by the fast decrease of the diameter of the fibers at the other temperatures and for low stresses at 900°C. The oxidation kinetic of the fibers increases because of the dissolution of silica coating by B2O3 oxide. Analytical modeling was performed to schedule the lifetime of these materials and the variability of the experimental results is studied.

Page generated in 0.0962 seconds