Spelling suggestions: "subject:"plug tests"" "subject:"slag tests""
1 |
Simple Models for Underdamped Slug Tests in High Permeability AquifersMarquez, Maria E 29 June 2016 (has links)
Accurate hydraulic conductivity values are necessary for understanding groundwater flow. Methods for estimating hydraulic conductivity show limitations because measured values vary several orders of magnitude in high permeability aquifers. Slug tests, while cost and time efficient, result in values lower than expected. It is proposed that underdamped behavior of water in a well is similar to mass on a damped spring; hence, models constructed to simulate behavior independent of aquifer effects might replicate some tests. The Poiseuille and Darcy-Weisbach models, and extensions of these models considering entry/exit effects, are applied to an aquifer-free laboratory test, and real wells. Aquifer-free laboratory tests are modeled well using both Poiseuille and Darcy-Weisbach models with entry/exit effects. The Poiseuille model for wells does not agree with observed data, possibly because of high Reynolds numbers. The Darcy-Weisbach model does agree with well data significantly better, although the friction factor relies on a single Reynolds number.
|
2 |
The rate and timing of direct mountain front recharge in an arid environment, Silver Island Mountains, UtahCarling, Gregory T. 03 December 2007 (has links) (PDF)
Direct mountain front recharge (MFR), water table recharge at the base of the mountain front, was evaluated on the arid (<250 mm/yr precipitation) Silver Island Mountains by comparing mountain precipitation to groundwater response. Direct MFR contributions were assessed on two catchments, one bedrock (i.e., mountain block) dominated and the other alluvial fan (i.e., mountain front) dominated. Catchment precipitation and shallow groundwater levels at each catchment outlet were measured for a 24 month period beginning October 2005. This time period captured one complete hydrologic cycle (December 2005-February 2007) for which annual and seasonal direct MFR rates were calculated. Annual direct MFR was calculated using a modified version of the water table fluctuation (WTF) method as 0.015-0.016% of precipitation on both catchments, with seasonal variations of 0% in summer up to 0.023% in winter, spring and fall. Seasonal direct MFR contributions are similar on the bedrock and the alluvial fan dominated catchments, with a notable exception during fall 2006 when direct MFR was twice as effective on the bedrock dominated system than on the alluvial fan dominated system (0.022% and 0.011% of precipitation, respectively). Darcy's law calculations show similarly low annual direct MFR contributions (0.013-0.032% of precipitation) as those calculated by the WTF method. Calculated direct MFR is 10% or less than typical calculated combined MFR (near surface recharge and deep underflow from the mountain block) for similar terrains and climates, and is only 3.5% of the combined MFR for the Silver Island Mountains as calculated by the Maxey-Eakin model. However, based on total recharge to the adjacent playa, it is apparent that the Maxey-Eakin model overestimates combined MFR, and the small calculated direct MFR is at least 50% of combined MFR. Despite some uncertainty in the numerical results, several patterns are evident in the data. The data show that direct MFR occurs in response to small rainfall events throughout much of the year, and that snowmelt is not necessary to produce direct MFR. The data also show that direct MFR responds more quickly and flushes through the system faster on the alluvial fan catchment than on the bedrock catchment.
|
Page generated in 0.0652 seconds