Spelling suggestions: "subject:"small polaron""
1 |
Non-instantaneous polarization in perovskite-like ferroelectrics revealed by correlated (ultra)fast luminescence and absorption spectroscopy. On the formation of self-trapped excitons in lithium niobate and their relation to small electron and hole polaron pairsKrampf, Andreas 28 August 2020 (has links)
In this work the transient non-instantaneous polarization, i.e., laser-pulse injected small
polarons and self-trapped excitons, is studied in the perovskite-like ferroelectric lithium
niobate. The investigations span a time scale from femtoseconds to several hours. It is
shown that the established small polaron picture is not able to describe transient absorption
and photoluminescence of lithium niobate consistently. Several strong indications
are presented demonstrating that the photoluminescence cannot be caused by geminate
small polaron annihilation.
Instead, the idea of radiatively decaying self-trapped excitons at the origin of the
blue-green photoluminescence is revived. Excitons pinned on defect sites are proposed to
lead to the already observed long-lived transient absorption in the blue spectral range in
Mg- and Fe-doped crystals. Excitons pinned on iron-defects are studied in more detail.
Their spectral fingerprint and absorption cross section is determined. Furthermore, it is
shown that the occurrence of these pinned STEs can be tailored by chemical treatment
of the samples and the experimental parameters such as the pump pulse intensity and
photon energy. Based on the new experimental results and reviewing data published
in literature, an atomistic picture of hopping and pinning of self-trapped excitons in
lithium niobate is proposed.
The question is addressed whether small polarons and self-trapped excitons in
lithium niobate are coupled species in the sense that oppositely-charged polarons may
merge into self-trapped excitons or STEs break into small polaron pairs. Decay kinetics
of transient absorption and luminescence assigned to free small polarons and STEs indicate
that this is not the case. For a more complete picture the ultrafast time scale is
investigated as well. The formation times of small polarons and STEs are determined,
which both lie in the range of 200 fs. No indications are found on the (sub)picosecond
time scale indicating a coupling of both quasi-particle species either.
In order to gain access to the formation of self-trapped excitons a custom-built
femtosecond broadband fluorescence upconversion spectrometer is installed. Based on
an already existing scheme, it is adapted to the inspection of weakly luminescent solid
samples by changing to an all reflective geometry for luminescence collection. To avoid
the necessity for an experimentally determined photometric correction of the used setup,
an already established calculation method is extended considering the finite spectral
bandwidth of the gate pulses.
The findings presented here are important not only as fundamental research, but
also regarding the technical application of lithium niobate and other similar nonlinear
optical crystals. The simultaneous occurrence of both small polarons and self-trapped excitons is a rather rarely described phenomenon. Usually, the optical response of wide
band gap oxide dielectrics is associated with only one of these quasi-particle species. This
work may therefore be a stimulus to review the existing microscopic models for transient
phenomena in other oxide dielectrics, which may help to improve their application in
nonlinear optical and electro-optical devices. In this context the ultrafast transient
photoluminescence spectroscopy established here for weakly luminescing solid samples
may again provide valuable insight.
With respect to lithium niobate, the results do not only resolve inconsistencies
between the microscopic pictures described in literature, but also provide information
regarding the extends to which the propagation of ultrashort laser pulses may be affected
by (pinned-)STE absorption. It is shown that tailoring of the long-lived absorption center
in the blue spectral range is possible, which may be used to avoid optical damage when
high repetition rates are applied.
It is important to emphasize that the microscopic model proposed in this work is
mainly based on experimental indications. It is the task of further detailed theoretical
investigations, e.g., via time-dependent density functional theory, to test whether the
proposed model is justified. From an experimental perspective the important question
remains whether (pinned-)STEs contribute to a photorefractive effect. In the experimentally
easily accessible spectral range no absorption feature of mobile STEs is observed.
As a complementary experimental technique, ultrafast holographic spectroscopy may
reveal an excitonic contribution to photorefraction and provide further insight to STE
transport and pinning phenomena.
|
2 |
Recombination dynamics of optically generated small polarons and self-trapped excitons in lithium niobateMesserschmidt, Simon 02 July 2019 (has links)
Quasi-particles formed in lithium niobate after pulse exposure were investigated by transient absorption and photoluminescence spectroscopy as well as numerical simulations. This includes the formation process, the transport through the crystal, interim pinning on defects during the relaxation process, and the final recombination with deep centers. It was shown that the charge-transport through the crystal can be described by a hopping transport including different types of hops between regular or defective lattice sites, i.e., the transport includes a mixture of free and bound small polarons. Furthermore, the different types of hops connected with varying activation energies and their distribution are responsible for an altered temporal decay curve when changing the crystal composition or temperature.
Additionally, it was shown that the hitherto accepted recombination model is insufficient to describe all transient absorption and luminescence effects in lithium niobate under certain experimental conditions, i.e., long-living absorption dynamics in the blue/UV spectral range do not follow the typical polaron dynamics and cannot be described under the assumption of charge compensation. However, similar decay characteristics between self-trapped excitons known from photoluminescence spectroscopy and the unexpected behavior of the transient absorption were found leading to a revised model. This includes, besides the known polaron relaxation and recombination branch, a significant role of self-trapped excitons and their pinning on defects (pinned STEs).
Since the consideration of further absorption centers in the relaxation path after pulse exposure might result in misinterpretations of previously determined polaron absorption cross-sections and shapes, the necessity to perform a review became apparent. Therefore, a supercontinuum pump-probe experiment was designed and all measurements applied under the same experimental conditions (temperature, polarization) so that one can extract the absorption amplitudes of the single quasi-particles in a spectral range of 0.7-3.0eV. The detailed knowledge might be used to deconvolve the absorption spectra and transform them to number densities of the involved centers which enables one to obtain an easier insight into recombination and decay dynamics of small polarons and self-trapped excitons.
As the hopping transport of quasi-particles and the concept of pinned STEs might be fundamental processes, a thorough understanding opens up the possibility of their exploitation in various materials. In particular, results presented herein are not only limited to lithium niobate and its applications; an extension to a wide range of further strongly polar crystals in both their microscopic processes and their use in industry can be considered.
|
3 |
Investigation of the magnetic and electronic structure of Fe in molecules and chalcogenide systemsTaubitz, Christian 09 June 2010 (has links)
In this work the electronic and magnetic structure of the crystals Sr2FeMoO6,
Fe0.5Cu0.5Cr2S4, LuFe2O4 and the molecules FeStar, Mo72Fe30, W72Fe30 are investigated
by means of X-ray spectroscopic techniques. These advanced materials exhibit very interesting properties like magnetoresistance or multiferroic behaviour. In case of the molecules they also could be used as spin model systems. A long standing issue concerning the investigation of these materials are contradicting results found for the magnetic and electronic state of the iron (Fe) ions present in these compounds. Therefore this work focuses on the Fe state of these materials in order to elucidate reasons for these problems. Thereby the experimental results are compared to multiplet simulations.
|
4 |
Nichtlineare Optik mit ultrakurzen Laserpulsen: Suszeptibilität dritter Ordnung und kleine Polaronen sowie Interferenz und Holographie verschiedenfarbiger LaserpulseBadorreck, Holger 13 June 2016 (has links)
In der vorliegenden Arbeit werden die nichtlinearen optischen Eigenschaften der Materialien Lithiumniobat und Di-Zinn-Hexathiohypodiphosphat aufgrund der Suszeptibilität 3. Ordnung und kleiner Polaronen untersucht. Zudem wird gezeigt, dass die Interferenz verschiedenfarbiger Laserpulse die Aufzeichnung von statischen und dynamischen holographischen Gittern ermöglicht. Ein Teil dieser Arbeit ist in den im Anhang angegebenen 6 Publikationen bereits veröffentlicht.
Lithiumniobat wird mit einer Erweiterung des Z-Scan Experiments untersucht, welches die Pulslängenabhängige Messung der nichtlinearen Absorption und der nichtlinearen Brechungsindexänderung ermöglicht. Dabei konnte festgestellt werden, dass bei sehr kurzen Pulslängen von 70 fs ein Effekt der Polaronen auf die nichtlineare Absorption vernachlässigbar ist und die Zwei-Photonen-Absorption die nichtlineare Absorption dominiert. Mit größerer Pulslänge gibt es allerdings Abweichungen zwischen der Theorie der Zwei-Photonen-Absorption und den Messergebnissen. Mit der Entwicklung eines Polaronen-Anregungs-Modells, welches eine polaronische Absorption aufgrund wiederholtem optisch induziertem Hopping annimmt, konnte dieser Effekt konsistent erklärt werden. Die Messungen der nichtlinearen Brechungsindexänderung lassen darauf schließen, dass sowohl freie Ladungsträger als auch kleine Polaronen neben der Suszeptibilität 3. Ordnung einen Einfluss auf die Brechungsindexänderung haben, da eine nichtlineare Abhängigkeit von der Intensität auch bei Pulslängen von 70 fs festgestellt werden konnte.
Analog dazu konnte in Di-Zinn-Hexathiohypodiphosphat ein großer Zwei-Photonen-Absorptionskoeffizient festgestellt werden, welcher für Photonenenergien nahe der Bandkante Werte zeigt, die größer sind als theoretischen Überlegungen zeigen. Eine transiente Absorption nach optischer Anregung, gemessen durch ein Anreg-Abtast-Experiment, sowie Literatur legen nahe, dass in Di-Zinn-Hexathiohypodiphosphat gebundene Lochpolaronen durch optische Anregung entstehen können.
Durch den hohen Zwei-Photonen-Absorptionskoeffizienten konnte das Aufzeichnen eines kontrastreichen, dynamischen Amplitudengitters mittels Femtosekundenpulsen gezeigt und nachgewiesen werden.
Die Kürze der Femtosekundenpulse ermöglicht aber nicht nur das Aufzeichnen eines Zwei-Photonen-Absorptionsgitters aufgrund der hohen Intensitäten, sondern erlaubt zudem die Beobachtung von Interferenz zwischen verschiedenfarbigen Pulsen. In der Zeitspanne der Pulslänge beträgt die Bewegung der Interferenzstreifen, welche in der Größenordnung der Lichtgeschwindigkeit liegt, nur ein Bruchteil der Streifendistanz, sodass das Interferenzmuster eingefroren und beobachtbar erscheint. Somit lassen sich statische Hologramme in holographischen Filmen, wie auch dynamische Hologramme aufzeichnen. Über ein dynamisches holographisches Gitter mittels Zwei-Photonen-Absorption konnte so eine Frequenzkonversion durch Dopplerverschiebung in Lithiumniobat gezeigt werden.
|
Page generated in 0.1784 seconds