Spelling suggestions: "subject:"softwaredefined"" "subject:"softwaredefined""
51 |
Wideband and Narrowband Spectrum Sensing Methods Using Software Defined RadiosStegman, Jason Karl 01 August 2014 (has links)
The ability to accurately sense the surrounding wireless spectrum, without having any prior information about the type of signals present, is an important aspect for dynamic spectrum access and cognitive radio. Energy detection is one viable method, however its performance is limited at low SNR and must adhere to Nyquist sampling theorem. Compressive sensing has emerged as a potential method to recover wideband signals using sub-Nyquist sampling rates, under the presumption that the signals are sparse in a certain domain. In this study, the performance and some of the practical limitations of energy detection and compressive sensing are compared via simulation, and also implementation using the Universal Software Radio Peripheral (USRP) software defined radio (SDR) platform. The usefulness and simplicity of the USRP and GNU Radio software toolkit for simulation and experimentation, as well as some other application areas of compressive sensing and SDR, is also discussed.
|
52 |
Enhancing network robustness using software-defined networkingLi, Xin January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Don M. Gruenbacher / Caterina M. Scoglio / As today's networks are no longer individual networks, networks are less robust towards failures and attacks. For example, computer networks and power networks are interdependent. Computer networks provide smart control for power networks, while power networks provide power supply. Localized network failures and attacks are amplified and exacerbated back and forth between two networks due to their interdependencies. This dissertation focuses on finding solutions to enhance network robustness. Software-defined networking provides a programmable architecture, which can dynamically adapt to any changes and can reduce the complexities of network traffic management. This architecture brings opportunities to enhance network robustness, for example, adapting to network changes, routing traffic bypassing malfunction devices, dropping malicious flows, etc. However, as SDN is rapidly proceeding from vision to reality, the SDN architecture itself might be exposed to some robustness threats. Especially, the SDN control plane is tremendously attractive to attackers, since it is the "brain" of entire networks. Thus, researching on network robustness helps protect network from a destructive disaster.
In this dissertation, we first build a novel, realistic interdependent network framework to model cyber-physical networks. We allocate dependency links under a limited budget and evaluate network robustness. We further revise a network flow algorithm and find solutions to obtain a basic robust network structure. Extensive simulations on random networks and real networks show that our deployment method produces topologies that are more robust than the ones obtained by other deployment techniques.
Second, we tackle middlebox chain problems using SDN. In computer networks, applications require traffic to sequence through multiple types of middleboxes to accomplish network functionality. Middlebox policies, numerous applications' requirements, and resource allocations complicate network management. Furthermore, middlebox failures can affect network robustness. We formulate a mixed-integer linear programming problem to achieve a network load-balancing objective in the context of middlebox policy chain routing. Our global routing approach manages network resources efficiently by simplifying candidate-path selections, balancing the entire network and using the simulated annealing algorithm. Moreover, in case of middlebox failures, we design a fast rerouting mechanism by exploiting the remaining link and middlebox resources locally. We implement proposed routing approaches on a Mininet testbed and evaluate experiments' scalability, assessing the effectiveness of the approaches.
Third, we build an adversary model to describe in detail how to launch distributed denial of service (DDoS) attacks to overwhelm the SDN controller. Then we discuss possible defense mechanisms to protect the controller from DDoS attacks. We implement a successful DDoS attack and our defense mechanism on the Mininet testbed to demonstrate its feasibility in the real world.
In summary, we vertically dive into enhancing network robustness by constructing a topological framework, making routing decisions, and protecting the SDN controller.
|
53 |
Policy-driven Network Defense for Software Defined NetworksJanuary 2016 (has links)
abstract: Software-Defined Networking (SDN) is an emerging network paradigm that decouples the control plane from the data plane, which allows network administrators to consolidate common network services into a centralized module named SDN controller. Applications’ policies are transformed into standardized network rules in the data plane via SDN controller. Even though this centralization brings a great flexibility and programmability to the network, network rules generated by SDN applications cannot be trusted because there may exist malicious SDN applications, and insecure network flows can be made due to complex relations across network rules. In this dissertation, I investigate how to identify and resolve these security violations in SDN caused by the combination of network rules and applications’ policies. To this end, I propose a systematic policy management framework that better protects SDN itself and hardens existing network defense mechanisms using SDN.
More specifically, I discuss the following four security challenges in this dissertation: (1) In SDN, generating reliable network rules is challenging because SDN applications cannot be trusted and have complicated dependencies each other. To address this problem, I analyze applications’ policies and remove those dependencies by applying grid-based policy decomposition mechanism; (2) One network rule could accidentally affect others (or by malicious users), which lead to creating of indirect security violations. I build systematic and automated tools that analyze network rules in the data plane to detect a wide range of security violations and resolve them in an automated fashion; (3) A fundamental limitation of current SDN protocol (OpenFlow) is a lack of statefulness, which is extremely important to several security applications such as stateful firewall. To bring statelessness to SDN-based environment, I come up with an innovative stateful monitoring scheme by extending existing OpenFlow specifications; (4) Existing honeynet architecture is suffering from its limited functionalities of ’data control’ and ’data capture’. To address this challenge, I design and implement an innovative next generation SDN-based honeynet architecture. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2016
|
54 |
Software Defined Applications in Cellular and Optical NetworksJanuary 2017 (has links)
abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
|
55 |
Threats and Defenses in SDN Control PlaneJanuary 2018 (has links)
abstract: Network Management is a critical process for an enterprise to configure and monitor the network devices using cost effective methods. It is imperative for it to be robust and free from adversarial or accidental security flaws. With the advent of cloud computing and increasing demands for centralized network control, conventional management protocols like Simple Network Management Protocol (SNMP) appear inadequate and newer techniques like Network Management Datastore Architecture (NMDA) design and Network Configuration (NETCONF) have been invented. However, unlike SNMP which underwent improvements concentrating on security, the new data management and storage techniques have not been scrutinized for the inherent security flaws.
In this thesis, I identify several vulnerabilities in the widely used critical infrastructures which leverage the NMDA design. Software Defined Networking (SDN), a proponent of NMDA, heavily relies on its datastores to program and manage the network. I base my research on the security challenges put forth by the existing datastore’s design as implemented by the SDN controllers. The vulnerabilities identified in this work have a direct impact on the controllers like OpenDayLight, Open Network Operating System and their proprietary implementations (by CISCO, Ericsson, RedHat, Brocade, Juniper, etc). Using the threat detection methodology, I demonstrate how the NMDA-based implementations are vulnerable to attacks which compromise availability, integrity, and confidentiality of the network. I finally propose defense measures to address the security threats in the existing design and discuss the challenges faced while employing these countermeasures. / Dissertation/Thesis / Masters Thesis Computer Science 2018
|
56 |
Software-Defined Computational Offloading for Mobile Edge ComputingKrishna, Nitesh 03 May 2018 (has links)
Computational offloading advances the deployment of Mobile Edge Computing (MEC) in the next generation communication networks. However, the distributed nature of the mobile users and the complex applications make it challenging to schedule the tasks reasonably among multiple devices. Therefore, by leveraging the idea of Software-Defined Networking (SDN) and Service Composition (SC), we propose a Software-Defined Service Composition model (SDSC). In this model, the SDSC controller is deployed at the edge of the network and composes service in a centralized manner to reduce the latency of the task execution and the traffic on the access links by satisfying the user-specific requirement. We formulate the low latency service composition as a Constraint Satisfaction Problem (CSP) to make it a user-centric approach. With the advent of the SDN, the global view and the control of the entire network are made available to the network controller which is further leveraged by our SDSC approach.
Furthermore, the service discovery and the offloading of tasks are designed for MEC environment so that the users can have a complex and robust system. Moreover, this approach performs the task execution in a distributed manner. We also define the QoS model which provides the composition rule that forms the best possible service composition at the time of need.
Moreover, we have extended our SDSC model to involve the constant mobility of the mobile devices. To solve the mobility issue, we propose a mobility model and a mobility-aware QoS approach enabled in the SDSC model. The experimental simulation results demonstrate that our approach can obtain better performance than the energy saving greedy algorithm and the random offloading approach in a mobile environment.
|
57 |
Integrating IP Protocol Into Optical Networks by Using Software-defined Network (SDN)Al-Ani, Layth January 2015 (has links)
The Internet, with cloud computing, offers amazing services that require a fast, intelligent, reliable network connection. Current networks, electrical or optical, need to work together to provide the user with a high-quality connection. The IP protocol as Layer 3 and an optical network as Layer 2 need to talk to each other and help each other instead of working separately. Therefore, this thesis proposes using software-defined network (SDN) technology for integrating the IP protocol into an optical network to fill the gap between the two layers and to give the network more intelligence and flexibility for new connection requests, choosing the best route, and monitoring the network. A two-layer SDN centralized controller design has been used. The Layer 1 SDN controller is the centralized controller that connects and updates all Layer 2 SDN controllers which control traffic in each domain. New connection requests are processed in the SDN controller and the traffic is forwarded by the optical network. SDN technology and the integration of IP into the optical network promise to enhance network connectivity.
|
58 |
A Bidirectional Two-Hop Relay Network Using GNU Radio and USRPLe, Johnny 08 1900 (has links)
A bidirectional two-hop relay network with decode-and-forward strategy is implemented using GNU Radio (software) and several USRPs (hardware) on Ubuntu (operating system). The relay communication system is comprised of three nodes; Base Station A, Base Station B, and Relay Station (the intermediate node). During the first time slot, Base Station A and Base Station B will each transmit data, e.g., a JPEG file, to Relay Station using DBPSK modulation and FDMA. For the final time slot, Relay Station will perform a bitwise XOR of the data, and transmit the XORed data to Base Station A and Base Station B, where the received data is decoded by performing another XOR operation with the original data.
|
59 |
GSM based Communication-Sensor (CommSense) SystemBhatta, Abhishek 16 August 2018 (has links)
Using communication signals for radar applications has been a major area of research in radar engineering. In the recent years, due to the widely available wireless signals, a new area of research called commensal radars has emerged. Commensal radars use available wireless Radio Frequency (RF) signals to detect and track targets of interest. This is achieved by placing two antennas, one towards the transmitting base station and the other towards the surveillance area. The signal received by these two antennas are correlated to determine the location and velocity of the target. When a signal passes through a channel, it reflects off the obstacles within its path. These reflections usually degrade quality of the signal and cause interference to the telecommunication systems. To mitigate the effects of the channel on a signal these systems transmit a known bit sequence within each frame. Our goal, with this thesis, is to design and implement a working prototype of a novel architecture for the commensal radar system, which uses these known bit sequences to extract the channel information and determine events of interest. The major novelties of the system are as follows. Firstly, this system will be built upon existing communication systems using Software Defined Radio (SDR) technology. Secondly, this design eliminates the need for a reference antenna, which reduces the cost of the system and creates an opportunity to make the system portable. We name this system Communication-Sensing (CommSense). Since, our plan is to use Global System for Mobile Communication (GSM) as the parent system for the prototype development, we decide to update the name to GSM based Communication-Sensing (GSM-CommSense) system. This thesis begins with theoretical analysis of the feasibility of the GSM-CommSense system. First of all, we perform a link budget analysis to determine the power requirements for the system. Then we calculate the ambiguity function and Cram´er-Rao Lower Bound (CRLB) for a two-path received signal model. With encouraging theoretical results, we design a prototype of the system that can capture real GSM base station broadcast signals. After the design of the GSMCommSense system, we capture channel data from multiple locations with varying environmental conditions. The aim for this set of experiment is to be able to distinguish between different environmental conditions. Then, we performed statistical analysis on the data by means of Probability Density Function (PDF) fitting, a goodness-of-fit test called chi-square test and a clustering algorithm called Principal Components Analysis (PCA). We have presented the results from each analysis and discussed them in detail. Upon, receiving positive results in each step we have decided to move towards using learning algorithms to categorise the data captured by the system. We have compared two widely accepted supervised learning algorithms, called Support Vector Machines (SVM) and Multi-Layer Perceptron (MLP). The results showed that with the current hardware capabilities of the system and the amount of data available per GSM frame, the performance of SVM is better than MLP. Thus, we have used SVM to classify two events of detection and classification across a wall. We have presented our findings and discussed the results in detail. We conclude our current work and provide scope for future work in development and analysis of the GSM-CommSense system.
|
60 |
Software defined networking based resource management and quality of service support in wireless sensor network applicationsLetswamotse, Babedi Betty January 2019 (has links)
To achieve greater performance in computing networks, a setup of critical computing aspects that ensures efficient network operation, needs to be implemented. One of these computing aspects is, Quality of Service (QoS). Its main functionality is to manage traffic queues by means of prioritizing sensitive network traffic. QoS capable networking allows efficient control of traffic especially for network critical data. However, to achieve this in Wireless Sensor Networks (WSN) is a serious challenge, since these technologies have a lot of computing limitations. It is even difficult to manage networking resources with ease in these types of technologies, due to their communication, processing and memory limitations. Even though this is the case with WSNs, they have been largely used in monitoring/detection systems, and by this proving their application importance.
Realizing efficient network control requires intelligent methods of network management, especially for sensitive network data. Different network types implement diverse methods
to control and administer network traffic as well as effectively manage network resources. As with WSNs, communication traffic and network resource control are mostly performed depending on independently employed mechanisms to deal with networking events occurring on different levels. It is therefore challenging to realize efficient network performance with guaranteed QoS in WSNs, given their computing limitations. Software defined networking (SDN) is advocated as a potential paradigm to improve and evolve WSNs in terms of capacity and application. A means to apply SDN strategies to these compute-limited WSNs, formulates software defined wireless sensor networks (SDWSN).
In this work, a resource-aware OpenFlow-based Active Network Management (OF-ANM) QoS scheme that uses SDN strategies is proposed and implemented to apply QoS requirements for managing traffic congestion in WSNs. This scheme uses SDN programmability strategies to apply network QoS requirements and perform traffic load balancing to ensure congestion control in SDWSN. Our experimental results show that the developed scheme is able to provide congestion avoidance within the network. It also allows opportunities to implement flexible QoS requirements based on the system’s traffic state.
Moreover, a QoS Path Selection and Resource-associating (Q-PSR) scheme for adaptive load balancing and intelligent resource control for optimal network performance is proposed and implemented. Our experimental results indicate better performance in terms of computation with load balancing and efficient resource alignment for different networking tasks when compared with other competing schemes. / Thesis (PhD)--University of Pretoria, 2019. / National Research Foundation / University of Pretoria / Electrical, Electronic and Computer Engineering / PhD / Unrestricted
|
Page generated in 0.0306 seconds